
Assignment 0:
Rule Induction

CSCI 5535 / ECEN 5533: Fundamentals of Programming Languages

Spring 2018: due Friday, January 26, 2018

Go to the course web page to understand the whiteboard policy for collaboration regarding the homework
assignments, the late policy regarding timeliness of homework submissions, and the use of Moodle.

Homework will typically consist of a theoretical section and an implementation section. For the first
assignment, there is only the theoretical section. You are required to typeset your answers.

In this first assignment we are asking you to practice proving theorems by rule induction. You may find
this assignment difficult. Start early, and ask us for help if you get stuck! In particular, you are encouraged to
ask clarification questions in class, on the discussion forum, or in office hours (but do not post your solutions
directly).

Remember to submit early and that late assignments will not be scored.

1 Course mechanics

The purpose of this question is to ensure that you get familiar with this course’s collaboration policy.
As in any class, you are responsible for following our collaboration policy; violations will be handled

according to university policy.

Task 1.1 (4 pts). Our course’s collaboration policy is on the course web site. Read it; then, for each of the
following situations, decide whether or not the students’ actions are permitted by the policy. Explain your
answers.

1. Dolores and Toby are discussing Problem 3 by IM. Meanwhile, Toby is writing up his solution to that
problem.

2. Amy, Jeff, and Chris split a pizza while talking about their homework, and by the end of lunch, their
pizza box is covered with notes and solutions. Chris throws out the pizza box and the three go to
class.

3. Ian and Jeremy write out a solution to Problem 4 on a whiteboard in CSEL. Then, they erase the
whiteboard and run to the atrium. Sitting at separate tables, each student types up the solution on his
laptop.

4. Nitin and Margaret are working on this homework over lunch; they write out a solution to Problem 2
on a napkin. After lunch, Nitin pockets the napkin, heads home, and writes up his solution.

1



2 Shuffling cards

For this assignment, we will play with cards. Rather than the standard 52 different cards, we will define four
different cards, one for each suit. We model a deck of cards as a list.

♥ card
(1) ♠ card

(2) ♣ card
(3) ♦ card

(4)

nil deck
(5)

c card s deck
cons(c, s) deck

(6)

These rules are an iterated inductive definition for a deck of cards; these rules lead to the following
induction principle:

In order to show P(s) whenever s deck, it is enough to show

1. P(nil)

2. P(cons(c, s)) assuming c card and P(s)

We also want to define an judgment unshuffle. Shuffling takes two decks of cards and creates a new
deck of cards by interleaving the two decks in some way; un-shuffling is just the opposite operation.

The definition of unshuffle(s1, s2, s3) defines a relation between three decks of cards s1, s2, and s3,
where s2 and s3 are arbitrary “unshufflings” of the first deck – sub-decks where the order from the original
deck is preserved, so that the two sub-decks s2 and s3 could potentially be shuffled back to produce the
original deck s1.

unshuffle(nil, nil, nil)
(7)

c card unshuffle(s1, s2, s3)

unshuffle(cons(c, s1), s2, cons(c, s3))
(8)

c card unshuffle(s1, s2, s3)

unshuffle(cons(c, s1), cons(c, s2), s3)
(9)

Task 2.1 (5 pts). Prove the following (by giving a derivation). There are at least two ways to do so.

unshuffle(cons(♥, cons(♠, cons(♠, cons(♦, nil)))), cons(♠, cons(♦, nil)), cons(♥, cons(♠, nil)))

Task 2.2 (5 pts). What was the other way? (describe briefly, or just give the other derivation)

Task 2.3 (10 pts). Prove that unshuffle has the following property:

For all s1, if s1 deck, then there exists s2 and s3 such that unshuffle(s1, s2, s3).

2



Note that there are a number of different ways of proving this! What the s2 and s3 “look like” may be
very different depending on how you write the proof. Restate any induction principle you use, and identify
what property P you are proving with that induction principle.

Task 2.4 (10 pts). Give an inductive definition of separate, a judgment similar to unshuffle that relates a
deck of cards to two “un-shuffled” sub decks where all of the red cards (suits ♦ and ♥) are in one deck and
all the black cards (suits ♣ and ♠) are in the other. The following should be provable from your inductive
definition:

separate(cons(♥, cons(♦, cons(♠, nil))), cons(♥, cons(♦, nil)), cons(♠, nil))
separate(cons(♠, cons(♦, cons(♣, cons(♥, nil)))), cons(♦, cons(♥, nil)), cons(♠, cons(♣, nil)))
separate(cons(♣, cons(♥, cons(♣, cons(♠, nil)))), cons(♥, nil), cons(♣, cons(♣, cons(♠, nil))))

However separate(cons(♥, cons(♠, nil)), cons(♥, cons(♠, nil)), nil) should not be provable from your
definition, because the deck in the second position has both a red and a black card.

Similarly, separate(cons(♥, cons(♦, nil)), cons(♦, cons(♥, nil)), nil) should not be provable from your
definitions, because ordering is not preserved.

Task 2.5 (5 pts). Hopefully, your definition of separate will have a similar property to unshuffle. That is,
for any s1 there exists s2 and s3 so that separate(s1, s2, s3) holds. However, it should satisfy a stronger
property: for any s1 the corresponding s2 and s3 should be unique. Argue why this is the case. Why does
unshuffle not have this property?

3 Cutting cards

For this part of the assignment we will define, using simultaneous inductive definition, decks of cards with
even or odd numbers of cards in them.

nil even
(10)

c card s odd
cons(c, s) even

(11) c card s even
cons(c, s) odd

(12)

This inductive definition is simultaneous (because it simultaneously defines even and odd) as well as
iterated (because it relies on the previously-defined definition of card).

Task 3.1 (6 pts). What is the induction principle for these judgments? You may want to examine the
induction principle for even and odd natural numbers from PFPL.

Task 3.2 (15 pts). Prove well-formedness for the even judgment. That is, prove “For all s, if s even then
s deck.”

You should use the induction principle from the previous task. Again, be sure to identify what property
or properties you are proving with that induction principle.

Task 3.3 (10 pts). Prove the following theorem:

For all S, if

1. S(nil).

2. For all c1, c2, and s, if c1 card, c2 card, and S(s), then S(cons(c1, cons(c2, s))).

3



then for all s, if s even then S(s).

You will want to use the induction principle mentioned above in order to prove this; as always, remember
to carefully consider and state the induction hypothesis you are using.

Note: this is a difficult proof, because the induction hypothesis is not immediately obvious. Here’s a
hint: because you are dealing with a simultaneous inductive definition, the induction hypothesis will have
two parts. In our solution, the induction hypothesis pertaining to even-sized decks is “S(s),” and the one
pertaining to odd-size decks is “For all c′, if c′ card then S(cons(c′, s)).”

Proving this statement justifies a new induction principle, a derived induction principle:

To show that S(s) whenever s even, it is enough to show

• S(nil)

• S(cons(c1, cons(c2, s))), assuming c1 card, c2 card, and S(s)

Task 3.4 (15 pts). Another “operation” on cards is cutting, where a player separates a single deck of cards
into two decks of cards by removing some number of cards from the top of the deck. We can define cutting
cards using an inductive definition.

s deck
cut(s, s, nil)

(13)
c card cut(s1, s2, s3)

cut(cons(c, s1), s2, cons(c, s3))
(14)

Using the derived induction principle from the previous task (you can use the induction principle from the
previous task even if you do not do the previous task!), prove the following:

For all s1, s2, s3, if s2 even, s3 even, and cut(s1, s2, s3), then s1 even.

You are allowed to assume the following lemmas:

• Inversion for nil: For all s1 and s2, if cut(s1, s2, nil), then s1 = s2 and s1 deck.

• Inversion for cons: For all s1, s2, and s3, if cut(s1, s2, cons(c, s3)), then there exists a s′1 such that
s1 = cons(c, s′1), c card, and cut(s′1, s2, s3).

4 Extra Credit: Missing Cards

For the final part of the assignment we will define a way of modelling a deck that is missing several cards
using generic and hypothetical judgments. Consider the following operator old(c1.c2. ). It takes a single
argument which binds two terms. We have a new judgment od old deck which will be used to define what
it means to be an old deck.

c1, c2 | c1 card, c2 card ` s deck

old(c1.c2.s) old deck

With this rule, we stipulate that something is an old deck if for whatever pair of cards we choose to insert
into s the result is a valid deck.

4



Task 4.1 (5 pts). Define (only!) one inference rule for the judgment od c1 c2 s fix which takes an old deck
and two cards and “fixes” the old deck by inserting the two new cards into the slots left by the missing cards
producing a normal deck s.

Task 4.2 (5 pts). Define one inference rule for the judgment s c1 c2 od remove so that if s is a deck with two
cards then od is the old deck version of s with c1 and c2 removed. For simplicity (and the next task) ensure
that c1 and c2 are the top two items on s.

Task 4.3 (5 pts). Assuming that you have completed the previous two tasks, you may now justify that you
have done so correctly by proving that they are inverses of sorts. That is prove

For all s, c1, c2, and od so c1 card, c2 card, s deck and od old deck holds, then if

cons(c1, cons(c2, s)) c1 c2 od remove

holds, so does
od c1 c2 cons(c1, cons(c2, s)) fix

Hint: be sure to use induction on the derivation of cons(c1, cons(c2, s)) c1 c2 od remove! This will tell
you enough about the structure of all the different arguments to the judgment to prove the claim.

5


	Course mechanics
	Shuffling cards
	Cutting cards
	Extra Credit: Missing Cards

