
Assignment #1:
Dynamics and Statics for a Simple Language

CSCI 5535 / ECEN 5533: Fundamentals of Programming Languages

Spring 2018: due Friday, February 9, 2018

The tasks in this homework ask you to prove (“meta theoretical”) properties about the language E,
defined in Part II of PFPL. They are “meta theoretical” in that they give a theory about the theory of E, and
are true about a large set of E programs, not specific, individual programs. Language E is, by design, tiny
to focus on the essence of meta-theory of programming languages.

Tasks

There is a lot of error checking going on in the dynamics in Appendix A. But as we will been discussing in
class, we can eliminate much or all of this by equipping our language with a static type system (see Chapter
6 of PFPL)!

The type checking rules for E are reproduced in Appendix B for your reference.

Grading criteria: To receive full credit for any proof below, you must at least do the following:

• At the beginning of your proof, specify over what structure or derivation you are performing induction
(i.e., which structure’s inductive principle are you using?)

• In the inductive cases of the proof, specify how you are applying the inductive hypothesis, and what
result it gives you.

If you omit these steps and/or do not make them explicit, you will receive zero credit for your proof. If
you attempt to do these steps, but you make a mistake, you may still receive some partial credit, depending
on your proof.

Note on omitting redundant proof cases: In the proofs below, some cases are very similar to other cases,
e.g., the cases for plus and times in the proofs below are likely to be analogous, in that (nearly) the same
proof steps are used in each. When this happens, you can omit the redundant cases as follows: If you do one
case, say for plus, you may (optionally) write in the other case for times that it is “analogous to the case
above, for plus”. You must make this omission explicit, to show that you have thought about it. Further,
this shortcut is only applicable when the cases really are analogous, and (nearly) the same steps apply in the
proof. When in doubt, do not omit the proof case.

Task 1 (5 pts). (Canonical Forms) Prove that if e val, then

1. if Γ ` e : num then e = num[n] for some number n.

1

2. if Γ ` e : str then e = str[s] for some string s.

Task 2 (15 pts). (Substitution) State and prove the substitution lemma for E.

Task 3 (20 pts). (Progress) State and prove the progress theorem for E. To receive full credit, you must
additionally use the canonical forms lemma correctly, when appropriate.

Task 4 (20 pts). (Preservation) State and prove the preservation theorem for E. To receive full credit, you
must additionally use the substitution lemma correctly, when appropriate.

Task 5 (15 pts). (Language Extension and Run-Time Errors) Complete the formalization of the extension
of E with div(e1;e2) from Section 6.3 of PFPL. That is, extend the judgment forms e val, e 7−→ e′, e err,
e ⇓ e′, and Γ ` e : τ from the appendix with rules for expression div(e1;e2) as appropriate.

Task 6 (25 pts). (Relating Structural and Evaluation Dynamics) Prove that your structural dynamics for E
with div(e1;e2) coincide with your evaluation dynamics. Specifically, prove if e 7−→∗ e′ and e′ val, then
e ⇓ e′. Hint: you will need a nesting of two inductions, that is, you will need to state and prove a separate
lemma that you use in the proof of this main theorem.

2

A Dynamics of E

e val

num[n] val str[s] val

e 7−→ e′

plus(num[n1];num[n2]) 7−→ num[n1 +n2]

e1 7−→ e′1
plus(e1;e2) 7−→ plus(e′1;e2)

e2 7−→ e′2
plus(num[n1];e2) 7−→ plus(num[n1];e′2) times(num[n1];num[n2]) 7−→ num[n1 ∗n2]

e1 7−→ e′1
times(e1;e2) 7−→ times(e′1;e2)

e2 7−→ e′2
times(num[n1];e2) 7−→ times(num[n1];e′2)

cat(str[s1];str[s2]) 7−→ str[s1ˆs2]

e1 7−→ e′1
cat(e1;e2) 7−→ cat(e′1;e2)

e2 7−→ e′2
cat(str[s1];e2) 7−→ cat(str[s1];e′2) len(str[s]) 7−→ num[|s|]

e 7−→ e′

len(e) 7−→ len(e′)

e1 val

let(e1;x.e2) 7−→ [e1/x]e2

e1 7−→ e′1
let(e1;x.e2) 7−→ let(e′1;x.e2)

e err

plus(str[s];e2) err plus(num[n];str[s]) err

e1 err

plus(e1;e2) err

e2 err

plus(num[n];e2) err

times(str[s];e2) err times(num[n];str[s]) err

e1 err

times(e1;e2) err

e2 err

times(num[n];e2) err

cat(num[n];e2) err cat(str[s];num[n]) err

e1 err

cat(e1;e2) err

e2 err

cat(str[s];e2) err

len(num[n]) err

e err

len(e) err

e1 err

let(e1;x.e2) err

3

e ⇓ e′

num[n] ⇓ num[n] str[s] ⇓ str[s]
e1 ⇓ num[n1] e2 ⇓ num[n2]

plus(e1;e2) ⇓ num[n1 +n2]

e1 ⇓ num[n1] e2 ⇓ num[n2]

times(e1;e2) ⇓ num[n1 ·n2]

e1 ⇓ str[s1] e2 ⇓ str[s2]

cat(e1;e2) ⇓ str[s1s2]

e ⇓ str[s] |s|= n

len(e) ⇓ num[n]
e1 ⇓ e′1 [e′1/x]e2 ⇓ e′2

let(e1;x.e2) ⇓ e′2

B Statics of E

Γ ` e : τ

x : τ ∈ Γ

Γ ` x : τ Γ ` num[n] : num Γ ` str[s] : str

Γ ` e1 : num Γ ` e2 : num

Γ ` plus(e1;e2) : num

Γ ` e1 : num Γ ` e2 : num

Γ ` times(e1;e2) : num

Γ ` e1 : str Γ ` e2 : str

Γ ` cat(e1;e2) : str

Γ ` e : str

Γ ` len(e) : num

Γ ` e1 : τ1 Γ,x : τ1 ` e2 : τ2

Γ ` let(e1;x.e2) : τ2

4

