
Assignment #2:
Language Design and Implementation

CSCI 5535 / ECEN 5533: Fundamentals of Programming Languages

Spring 2018: Due Friday, February 23, 2018

The tasks in this homework ask you to formalize and prove meta-theoretical properties of
an imperative core language IMP based on your experience with E. This homework also asks
you to implement an extension of E in OCaml to gain experience translating formalization to
implementation.

1 Language Design: IMP

In this section, we will formalize a variant of IMP from Chapter 2 of FSPL based on our expe-
rience from Homework Assignment 1. While it will be helpful to reference FSPL and PFPL, it is
advised start from the principles you have learned thus far.

Consider the following syntax chart for IMP:

Typ τ ::= num num numbers
bool bool booleans

Exp e ::= addr[a] a addresses (or “assignables”)
num[n] n numeral
bool[b] b boolean
plus(e1;e2) e1 +e2 addition
times(e1;e2) e1 ∗e2 multiplication
eq(e1;e2) e1 == e2 equal
le(e1;e2) e1 <= e2 less-than-or-equal
not(e1) !e1 negation
and(e1;e2) e1 && e2 conjunction
or(e1;e2) e1 ||e2 disjunction

Cmd c ::= set[a](e) a := e assignment
skip skip skip
seq(c1;c2) c1; c2 sequencing
if(e;c1;c2) if e then c1 else c2 conditional
while(e;c1) while e do c1 looping

Addr a

Addresses a represent static memory store locations and are drawn from some unbounded set
Addr. For simplicity, we fix all memory locations to only store numbers (as in FSPL). A store σ is

1

thus a mapping from addresses to numbers, written as follows:

σ ::= · |σ,a ,→ n

We rely on your prior experience with other programming languages for the semantics of
the number, boolean, and command operations. Equality is polymorphic for both numbers
and booleans, but all operators are monomorphic (e.g., and(e1;e2) applies only to boolean ar-
guments). With respect to order of evaluation, let us fix all operators to be left-to-right. Further,
let us define and(e1;e2) and or(e1;e2) to be short circuiting.

Extra Credit. Complete this section where instead memory locations can store any values (i.e.,
numbers or booleans). Note that doing so will require extending the judgment forms with ad-
ditional parameters.

We have chosen to stratify the syntax to separate commands c from expressions e to, at
times, be able to focus on our discussion on either commands or expressions. By doing so,
the semantics of IMP will require judgment forms both for expressions and commands.

1.1. Formalize the statics for IMP with two judgment forms e : τ and c ok that define well-typed
IMP programs.

1.2. Formalize the dynamics for IMP by the following:

(a) Define values and final commands e val and c final.

(b) Define a big-step operational semantics (i.e., evaluation semantics) with the judgment
forms 〈e,σ〉 ⇓ e′ and 〈c,σ〉 ⇓ σ′. Notice that the expression and command judgment
forms are not entirely parallel. The expression form returns a value-expression but not
a store, while the command form returns a store but not a final-command.

(c) Define a small-step operational semantics with the judgment forms 〈e,σ〉 7−→ 〈e′,σ′〉
and 〈c,σ〉 7−→ 〈c′,σ′〉.

(d) i. State the canonical forms lemmas. No need to fully prove these, but it is important
sketch enough of the proofs to convince yourself (and others) that you have the
correct statements.

ii. State the progress and preservation lemmas for expressions. No need to fully prove
these, but it is important to sketch enough of the proof to see that you have stated
the appropriate canonical forms lemmas.

iii. State and prove progress and preservation for commands.

(e) “It’s Just Semantics.”

i. Give the alternative non–short-circuiting big-step and small-step semantics for
the and(e1;e2) expression. That is, give rules for judgment forms 〈e,σ〉 ⇓ e′ and
〈e,σ〉 7−→ 〈e′,σ′〉 that replace the rules given above the and(e1;e2) expression.

ii. Does short-circuiting versus non-short-circuiting affect the derivability in the big-
step semantics? In other words, considering the set of rules defining the big-step
semantics with short-circuiting and(e1;e2) versus the set of rules defining the big-
step semantics with non-short-circuiting and(e1;e2), is there a judgment that is

2

derivable in one system but not the other? If yes, provide such a judgment and
brief explanation. If not, give a brief explanation why there is no difference in
derivability.

iii. How about for the small-step semantics? Please be clear and concise.

(f) Manual Program Verification. Let us write even(n) for the predicate on numbers that
is true for even numbers. Prove the following statement: if 〈while e do a := a+2,σ〉 ⇓σ′

such that even(σ(a)), then even(σ′(a)). You may rely on your background knowledge
about the even predicate.

2 Language Implementation: ETPS

In this section, we will implement in OCaml the language ETPS, that is, the language that com-
bines language E (numbers and strings), language T (primitive recursion over natural num-
bers), language P (nullary-binary products), and language S (nullary-binary sums). We have
already “implemented” ETPS in the meta-language of grammars and judgments, so when
we say “implement in OCaml,” we consider a formulaic translation using one meta-language
(grammars and judgments) to another (OCaml).

When implementing a language, it is most effective to work by “growing the language” with
test-driven development along the way. That is, start with the datatypes defining a small sub-
language and implement all functions (e.g., type checking, substitution, evaluation, reduction)
and then incrementally update the datatypes and functions with additional language features
one-at-a-time. Observe that this suggested approach is in contrast to proceeding one-phase-
at-a-time: first defining the syntax, then implementing the type checker, then implementing
substitution, then implementing evaluation, etc.

2.1. Implement language E along with thorough unit tests.

2.2. Implement language ET along with thorough unit tests.

2.3. Implement language ETP along with thorough unit tests.

2.4. Implement language ETPS along with thorough unit tests.

Explain your testing strategy and justify that your test cases attempt to cover your code as
thoroughly as possible (e.g., they attempt to cover different execution paths of your implemen-
tation with each test). Write this explanation as comments alongside your test code.

Translating a Language to OCaml. When we say “implement Language X in OCaml,” we
mean precisely the following components.

• Define the syntactic forms as OCaml datatypes (i.e., each meta-variable becomes a datatype).

3

For terminals, we need to decide on a representation (e.g., variables var as OCaml strings).

x type var = string
n type num = int
s type str = string
e type exp
τ type typ
Γ type typctx

For testing and debugging, it is helpful to have functions that mediate between abstract
syntax (i.e., OCaml values of the above types) and concrete syntax (e.g., a string of ASCII
characters). Going from concrete to abstract syntax is called parsing, and going from ab-
stract to concrete is called pretty-printing. We will need one for each datatype, for exam-
ple,

parse_exp : string -> exp
pp_exp : exp -> string

For this assignment, implementing parsing is optional (and not recommended until com-
pleting everything else).

• Implement OCaml functions for each function and judgment form.

[e′/x]e val subst : exp -> var -> exp -> exp
e val val is_val : exp -> bool
Γ` e : τ val exp_typ : typctx -> exp -> typ option
e ⇓ e′ val eval : exp -> exp
e 7−→ e′ val step : exp -> exp

For substitution subst, make sure that you implement shadowing correctly.

Notice that, as a design decision, we handle errors differently for statics (exp_typ) versus
dynamics (eval and step). By error, we mean the inability to derive the judgment. For
typing (exp_typ Γ e), we return a typ option where Some(τ) indicates we have a deriva-
tion for Γ` e : τ and None means that we are not able to derive Γ` e : τ for any τ. For eval
and step, we instead raise an exception if the input expression does not allow deriving
the judgment of interest. For instance, the single-step function (step e) should return an
e′ such that e 7−→ e′ or otherwise raise an Invalid_argument exception.

• Implement a multiple-steps function

steps_pap : typ -> exp -> exp

that iterates the single-step function until a value. We will test progress and preservation
at each step. Since meta-theory proofs have shown progress and preservation, calls to
step should never raise an exception (unless you have a bug in the translation).

To be precise, let us define a judgment form e ,→:τ e′ for steps_pap:

e : τ e val

e ,→:τ e

e : τ e 7−→ e′ e′ ,→:τ e′′

e ,→:τ e′′

4

As a side effect, use the pretty-printing functions above to print the expression and the
type at each step.

3 Final Project Preparation: Pre-Proposal

3.1. Start thinking about the final project. Choose a partner. Review the course website for
more detailed information about the class project.

To receive full points on this homework, you must do the following:

• Answer the pre-proposal questions.

1. Who are the members of your team?

2. What basic problem will your project try to solve?

If you already have a research project, consider how to incorporate it! Write your pre-
proposal in about 250 words. Be clear about your interests and what background read-
ing you have done thus far.

• Scan the titles of papers at (at least) five top PL conferences. Name these conferences
(including years), and include the conference URL with this information. For each
conference, name the paper title and abstract that seems most interesting to you from
that conference’s proceedings that year. Include a citation along with a URL for each
paper. Using BibTeX and DBLP is recommended.

5

