Assignment #3:
Compilation and Interpretation

CSCI 5535 / ECEN 5533: Fundamentals of Programming Languages

Spring 2018: Due Friday, March 9, 2018

This homework has two parts. The first asks you to consider the relationship between a de-
notational formalization and an operational one. The second asks you to extend your language
implementation in OCaml to further gain experience translating formalization to implementa-

tion.

1 Denotational Semantics: IMP

Recall the syntax chart for IMP:

Typ 7T == num num
bool bool
Exp e = addrld] a
num(n) n
booll[b] b
plus(e;;e) e +e
times(e;;e) e *xe
eq(er; e2) e ==e
le(er; e2) e <=e
not(e;) leg
and(ey; e) e && e
or(er; e) erlle
Cmd ¢ = setlal(e) a:=e
skip skip
seq(c1;) C1; 2
if(eg ;) if ethenc else
while(e;c;) whileedo
Addr a

numbers
booleans
addresses (or “assignables”)
numeral

boolean

addition
multiplication
equal
less-than-or-equal
negation
conjunction
disjunction
assignment

skip

sequencing
conditional
looping

As before, addresses a represent static memory store locations and are drawn from some un-
bounded set Addr and all memory locations only store numbers. A store o is thus a mapping

from addresses to numbers, writte

n as follows:

Store o

‘lo,a—n

The semantics of IMP is as a formalized in the previous assignment operationally. In this
section, we will consider a denotational formalization.
The set of values Val are the disjoint union of numbers and booleans:

Val v:=num[n]|booll[b].
1.1. (a) Formalize the dynamics of IMP as two denotational functions.

[[1 : Exp— (Store —Val)
[1 : Cmd— (Store — Store)

(b) Prove that your denotational definitions coincide with your operational ones.
i. State the lemma that your definitions for expressions coincide.

ii. Prove the equivalence of your definitions for commands, that is,
(0,0") € [c] ifand only if {c,0) | 0.
Begin by copying your definition of (¢, o) |} ¢’ from your previous homework sub-
mission.

1.2. Manual Program Verification. Prove the following statement about the denotational se-
mantics of IMP.

If [while edo a:= a+2] 0 = o' such that even(o(a)), then even(o’'(a))

Unlike in the previous assignment, this time you should use your denotational semantics
for the proof. Hint: your proof should proceed by mathematical induction.

2 Comparing Operational and Denotational Semantics

Regular expressions are commonly used as abstractions for string matching. Here is an abstract
syntax for regular expressions:

r o= ‘¢’ singleton — matches the character ¢
| empty skip — matches the empty string
| concatenation — matches r; followed by r,
| 11l or —matches r; or ry
| r= Kleene star — matches 0 or more occurrences of r

[. matches any single character

| [‘c1’—‘c2’] matches any character between c¢; and ¢, inclusive
| r+ matches 1 or more occurrences of r

| r? matches 0 or 1 occurrence of r

We will call the first five cases the primary forms of regular expressions. The last four cases can
be defined in terms of the first five. We also give an abstract grammar for strings (modeled as
lists of characters):

s u= - emptystring
| c¢s string with first character ¢ and other characters s

We write “bye" as shorthand for bye-.
We introduce the following big-step operational semantics judgment for regular expression
matching:
r matches s leaving s’

The interpretation of the judgment is that the regular expression r matches some prefix of the
string s, leaving the suffix s’ unmatched. If s’ = -, then r matched s exactly. For example,

‘h’(“e’+) matches “hello" leaving “110"

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

(‘h’ | “e?)* matches “hello" leaving “hello"
(‘h’ | “e?)* matches “hello" leaving “ello"
(‘h’ | “e?)* matches “hello" leaving “110"

We leave the rules of inference defining this judgment unspecified. You may consider giving
this set of inference rules an optional exercise.

Instead, we will use denotational semantics to model the fact that a regular expression can
match a string leaving many possible suffixes. Let Str be the set of all strings, let ©(Str) be the
powerset of Str, and let RE range over regular expressions. We introduce a semantic function:

[-1:RE — (Str— ©(5tn)

The interpretation is that [r] is a function that takes in a string-to-be-matched and returns a set
of suffixes. We might intuitively define [-] as follows:

[r] = As. {s"| r matches sleaving s’}

In general, however, one should not define the denotational semantics in terms of the opera-
tional semantics. Here are two correct semantic functions:
[‘c’] = As.As | s=<c> s’}
[empty] = As. {s}
2.1. Give the denotational semantics functions for the other three primal regular expressions.

Your semantics functions may not reference the operational semantics.

2.2. We want to update our operational semantics for regular expressions to capture multiple
suffixes. We want our new operational semantics to be deterministic—it should give the
same answer as the denotational semantics above. We introduce a new judgment as fol-
lows:

r matches s leaving S

where S is a meta-variable for a set of strings. And use rules of inference like the following:

‘¢’ matches sleaving {s'| s= ‘¢’ '} empty matches s leaving {s}

r1 matches s leaving S; ro matches s leaving S»

r1 | ro matches s leaving S; U S»

Do one of the following:

 Either give operational semantics rules of inference for r* and r; r,. Your operational
semantics rules may not reference the denotational semantics. You may not place a
derivation inside a set constructor, as in: {s| 3S.r matches sleaving S}. Each infer-
ence rule must have a finite and fixed set of hypotheses.

e Orargue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of in-
ference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research in any area is getting stuck. When you get stuck, you must be able
to recognize whether “you are just missing something” or “the problem is actually impossi-
ble.”

3 Implementation: General Recursion and Polymorphism

In this section, we will reformulate language ETPS so that it admits general recursion (and
thus non-terminating programs) and parametric polymorphism.

Follow the “Translating a Language to OCaml” guidance from the previous homework as-
signment. That is, we will implement functions that define both the static and dynamic seman-
tics of the language.

[€/x]e val subst : exp -> var -> exp -> exp

eval val is_val : exp -> bool

I'Fe:t val exp_typ : typctx -> exp -> typ option
e— ¢ val step : exp -> exp

e—..¢ val steps_pap : typ -> exp -> exp

To avoid redundancy in the assignment, you may skip implementing the big-step evaluator
e || € in this assignment.

3.1. Adaptyourlanguage ETPS with general recursion. That is, replace the language T portion
(primitive recursion with natural numbers) with language PCF from Chapter 19 of PFPL
(general recursion with natural numbers).

3.2. Add recursive types (i.e., language FPC from Chapter 20 of PFPL). While type nat of natu-
ral numbers is definable in FPC, leave the primitive nat in for convenience in testing.

3.3. Add parametric polymorphism (i.e., System F from Chapter 16 of PFPL). Note that Sys-
tem F extends the typing judgment with an additional context for type variables:

A == -|A, ttype kind contexts
t type variables

and a well-formedness judgment for types A - 7 type. We thus have to update our imple-
mentation accordingly:

t type typvar = string

A type kindctx

ATl'kFe:t1 val exp_typ : kindctx -> typctx -> exp -> typ option
At ttype val typ_form : kindctx -> typ -> bool

Explain your testing strategy and justify that your test cases attempt to cover your code as
thoroughly as possible (e.g., they attempt to cover different execution paths of your implemen-
tation with each test). Write this explanation as comments alongside your test code.

4 Final Project: Proposal

4.1. Reading Papers. Continue reading the papers that you chose in Homework 2. For each of
the five papers, and for each question below, write two concise sentences:

(a) Why did you select this paper?
(b) What is the “main idea” of the paper?

(c) How well is this main idea communicated to you when you read the first two sections
and conclusion of paper, and skimmed the rest? In particular, explain what aspects
seem important, are which are clear versus unclear. You may want to read deeper into
the details of the paper body if these beginning and ending sections do not make the
main ideas clear; make a note if this is required.

Take a look at Keshav’s “How to Read a Paper’ﬂ for further advice on reading papers.

4.2. Proposal. Continue thinking about your class project. Write an updated explanation of
your plan (expanding and revising as necessary), and what you hope to accomplish with
your project by the end of the semester. That is, on what artifact do you want to be graded?
By writing your plan now, you are also generating a draft of part of your final report.

Here are questions that you should address in your project proposal. You will have the
opportunity to revise your proposal in the next assignment, but the more concrete your
proposal is early on, the better the feedback you are likely to receive.

(a) Define the problem that you will solve as concretely as possible. Provide a scope of
expected and potential results. Give a few example programs that exhibit the problem
that you are trying to solve.

(b) What is the general approach that you intend to use to solve the problem?

(c) Why do you think that approach will solve the problem? What resources (papers, book
chapters, etc.) do you plan to base your solution on? Is there one in particular that you
plan to follow? What about your solution will be similar? What will be different?

(d) How do you plan to demonstrate your idea?

(e) How will you evaluate your idea? What will be the measurement for success?

1S. Keshav. 2007. How to read a paper. SIGCOMM Comput. Commun. Rev. 37, 3 (July 2007), 83-84. http:
//ccr.sigcomm.org/online/files/p83-keshavA.pdf

http://ccr.sigcomm.org/online/files/p83-keshavA.pdf
http://ccr.sigcomm.org/online/files/p83-keshavA.pdf
http://ccr.sigcomm.org/online/files/p83-keshavA.pdf

	Denotational Semantics: IMP
	Comparing Operational and Denotational Semantics
	Implementation: General Recursion and Polymorphism
	Final Project: Proposal

