Assignment #4:
Program Verification and Implementation

CSCI 5535 / ECEN 5533: Fundamentals of Programming Languages

Spring 2018: Due Friday, March 23, 2018

This homework has two parts. The first considers a deductive system for thinking about
program correctness. The second considers a semantics that is closer a machine implementa-
tion.

1 Axiomatic Semantics: IMP

We continue to consider the same language IMP with the syntax chart:

Typ 1 == num num numbers
bool bool booleans

Exp e := addrldl a addresses (or “assignables”)
num|n] n numeral
booll[b] b boolean
plus(e;;e) e +e addition
times(e;;e) e *xe multiplication
eq(er; e2) er==—e equal
le(er; e) eg<=e less-than-or-equal
not(ep) leg negation
and(ej; e) e &&e conjunction
or(ey;e) ellle disjunction

Cmd ¢ == setlal(e a:=e assignment
skip skip skip
seq(cy; &) C1; G sequencing
if(e;cy;) if ethenc; elsecy, conditional
while(e;c;) whileedo looping

Addr a

As before, addresses a represent static memory store locations and are drawn from some un-
bounded set Addr and all memory locations only store numbers. A store o is thus a mapping
from addresses to numbers, written as follows:

Store o = -|o,a—n
The semantics of IMP is as a formalized as before operationally, and we consider the Hoare

rules for partial correctness as in Chapter 6 of FSPL.

1

1.1. Program Correctness. Prove using Hoare rules the following property: if we start the com-
mand while edo a:= a+ 2 in a state that satisfies the assertion even(a), then it terminates
in a state satisfying even(a). That is, prove the the following judgment:

{even(a)} while edoa:=a+2{even(a)}

Hint: your proof should not use induction.

1.2. Hoare Rules. Consider an extension to IMP
¢ == do(c;;e) docywhilee at-least-oncelooping

with a command for at-least-once looping. Extend the Hoare judgment form { A} ¢{B} for
this command.

2 Abstract Machines and Control Flow

In this section, we will consider a new implementation of language PCF based on abstract
machines (i.e., K from Chapter 28 of PFPL).

One aspect of a structural small-step operational semantics (as we used in previous assign-
ments) that seems wasteful from an implementation perspective is that we “forget” where we
are reducing at each step. An abstract machine semantics makes explicit the “program counter”
in its state.

2.1. Give a specification for K as a call-by-value language. That is, modify the definition of the
judgments f frame and s — s’ from Section 28.1 of PFPL. You will also need to update the
auxiliary frame-typing judgment f : 7~ 7’ from Section 28.2 in order to state safety.

2.2. Safety.

(a) Prove preservation: if s ok and s — s, then s’ ok.

(b) Prove progress: if s ok, then either s final or s— s’ for some state s'.

2.3. Implementation.
(a) Implement call-by-value K. You need not include previously implemented language
features (though you may include some of them if you want).
First, we have some new syntactic forms:

frames f type frame
stacks k type stack
states s type state

frame list
Eval of stack * exp | Ret of stack * exp

Then, we will implement functions that define both the static and dynamic semantics

of the language.

[¢'/x]e val subst : exp -> var -> exp -> exp

eval val is_val : exp -> bool

I'Fe:t1 val exp_typ : typctx -> exp -> typ option
s— val step : state -> state

sfinal val is_final : state -> bool

k>:t val stack_type : stack -> typ option
f:t~1 val frame_type : frame -> typ -> typ option
sok val is_ok : state -> bool

sk S val steps_pap : state -> state

The s — s’ is the analogous iterate-step-with-preservation-and-progress for states.

/

sok sfinal sok s—s s = s

Sk S s—ok S’

(b) Extra credit: Exceptions. Extend your K machine with exceptions as in Section 29.2.
You may choose nat for the type of the value carried by the exception.

(c) Extra credit: Continuations. Extend your K machine with continuations as in Sec-
tion 30.2. Implementing continuations is independent of implementing exceptions,
so you may choose to do either or both. (Technically, you can encode exceptions with
continuations.)

3 Final Project Preparation: Proposal Revision

3.1. Reading Papers. Follow some citations based on the papers you chose in Homework 2 and
read in Homework 3. List at least three cited papers that seems relevant to follow up on.
Include a citation along with a URL for each paper. For each of the additional papers, and
for each question below, write two concise sentences:

(a) Why did you select this cited paper?

(b) What is the relation between the “main idea” of this cited paper and the “main idea” of
the paper that cites it? You may want to skim the introductory and concluding bits of
the cited paper along with the related work in the citing paper.

3.2. Proposal. Finalize your class project plan. Write an updated explanation of your plan
(expanding and revising as necessary), and what you hope to accomplish with your project
by the end of the semester. That is, on what artifact do you want to be graded?

Here are questions that you should address in your project proposal.

(a) Define the problem that you will solve as concretely as possible. Provide a scope of
expected and potential results. Give a few example programs that exhibit the problem
that you are trying to solve.

(b) What is the general approach that you intend to use to solve the problem?

(c) Why do you think that approach will solve the problem? What resources (papers, book
chapters, etc.) do you plan to base your solution on? Is there one in particular that you
plan to follow? What about your solution will be similar? What will be different?

(d) How do you plan to demonstrate your idea?

(e) How will you evaluate your idea? What will be the measurement for success?

4 Feedback and Discussion

4.1. Assignment Feedback. Complete the survey on the linked from the moodle after complet-
ing this assignment. Any non-empty answer will receive full credit for this part.

4.2. Assignment Discussion. Remember to sign up for a discussion session with your grader
once you have received written feedback on your assignment. Engaging in a discussion

session will receive full credit for this part.

	Axiomatic Semantics: IMP
	Abstract Machines and Control Flow
	Final Project Preparation: Proposal Revision
	Feedback and Discussion

