
Meeting
5:
Statics
and
dynamics

Announcements

Schedule updated:
More explicit that HW0 = Part I Project and HW1 = Part II Project.

Homework 1 due next week: Friday at 6:00pm

Submission

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Submit (push) to GitHub
And upload zip to Moodle

Questions

Eirian
Work through Lemma 4.4 (Substitution)
Notation: dom; e1/e2/z
Concrete versus abstract syntax
Lemma 4.1: Unicity of typing
Example of not satisfying
Chapter 3
Notation from 3.4
"Structural properties" -- big picture

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Assignment #1:
Dynamics and Statics for a Simple Language

CSCI 5535 / ECEN 5533: Fundamentals of Programming Languages

Spring 2018: due Friday, February 9, 2018

The tasks in this homework ask you to prove (“meta theoretical”) properties about the language E,
defined in Part II of PFPL. They are “meta theoretical” in that they give a theory about the theory of E, and
are true about a large set of E programs, not specific, individual programs. Language E is, by design, tiny
to focus on the essence of meta-theory of programming languages.

Tasks

There is a lot of error checking going on in the dynamics in Appendix A. But as we will been discussing in
class, we can eliminate much or all of this by equipping our language with a static type system (see Chapter
6 of PFPL)!

The type checking rules for E are reproduced in Appendix B for your reference.

Grading criteria: To receive full credit for any proof below, you must at least do the following:

• At the beginning of your proof, specify over what structure or derivation you are performing induction
(i.e., which structure’s inductive principle are you using?)

• In the inductive cases of the proof, specify how you are applying the inductive hypothesis, and what
result it gives you.

If you omit these steps and/or do not make them explicit, you will receive zero credit for your proof. If
you attempt to do these steps, but you make a mistake, you may still receive some partial credit, depending
on your proof.

Note on omitting redundant proof cases: In the proofs below, some cases are very similar to other cases,
e.g., the cases for plus and times in the proofs below are likely to be analogous, in that (nearly) the same
proof steps are used in each. When this happens, you can omit the redundant cases as follows: If you do one
case, say for plus, you may (optionally) write in the other case for times that it is “analogous to the case
above, for plus”. You must make this omission explicit, to show that you have thought about it. Further,
this shortcut is only applicable when the cases really are analogous, and (nearly) the same steps apply in the
proof. When in doubt, do not omit the proof case.

Task 1 (5 pts). (Canonical Forms) Prove that if e val, then

1. if Γ ` e : num then e = num[n] for some number n.

1

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

2. if Γ ` e : str then e = str[s] for some string s.

Task 2 (15 pts). (Substitution) State and prove the substitution lemma for E.

Task 3 (20 pts). (Progress) State and prove the progress theorem for E. To receive full credit, you must
additionally use the canonical forms lemma correctly, when appropriate.

Task 4 (20 pts). (Preservation) State and prove the preservation theorem for E. To receive full credit, you
must additionally use the substitution lemma correctly, when appropriate.

Task 5 (15 pts). (Language Extension and Run-Time Errors) Complete the formalization of the extension
of E with div(e1;e2) from Section 6.3 of PFPL. That is, extend the judgment forms e val, e 7−→ e′, e err,
e ⇓ e′, and Γ ` e : τ from the appendix with rules for expression div(e1;e2) as appropriate.

Task 6 (25 pts). (Relating Structural and Evaluation Dynamics) Prove that your structural dynamics for E
with div(e1;e2) coincide with your evaluation dynamics. Specifically, prove if e 7−→∗ e′ and e′ val, then
e ⇓ e′. Hint: you will need a nesting of two inductions, that is, you will need to state and prove a separate
lemma that you use in the proof of this main theorem.

2

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

A Dynamics of E

e val

num[n] val str[s] val

e 7−→ e′

plus(num[n1];num[n2]) 7−→ num[n1 +n2]

e1 7−→ e′1
plus(e1;e2) 7−→ plus(e′1;e2)

e2 7−→ e′2
plus(num[n1];e2) 7−→ plus(num[n1];e′2) times(num[n1];num[n2]) 7−→ num[n1 ∗n2]

e1 7−→ e′1
times(e1;e2) 7−→ times(e′1;e2)

e2 7−→ e′2
times(num[n1];e2) 7−→ times(num[n1];e′2)

cat(str[s1];str[s2]) 7−→ str[s1ˆs2]

e1 7−→ e′1
cat(e1;e2) 7−→ cat(e′1;e2)

e2 7−→ e′2
cat(str[s1];e2) 7−→ cat(str[s1];e′2) len(str[s]) 7−→ num[|s|]

e 7−→ e′

len(e) 7−→ len(e′)

e1 val

let(e1;x.e2) 7−→ [e1/x]e2

e1 7−→ e′1
let(e1;x.e2) 7−→ let(e′1;x.e2)

e err

plus(str[s];e2) err plus(num[n];str[s]) err

e1 err

plus(e1;e2) err

e2 err

plus(num[n];e2) err

times(str[s];e2) err times(num[n];str[s]) err

e1 err

times(e1;e2) err

e2 err

times(num[n];e2) err

cat(num[n];e2) err cat(str[s];num[n]) err

e1 err

cat(e1;e2) err

e2 err

cat(str[s];e2) err

len(num[n]) err

e err

len(e) err

e1 err

let(e1;x.e2) err

3

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

e ⇓ e′

num[n] ⇓ num[n] str[s] ⇓ str[s]
e1 ⇓ num[n1] e2 ⇓ num[n2]

plus(e1;e2) ⇓ num[n1 +n2]

e1 ⇓ num[n1] e2 ⇓ num[n2]

times(e1;e2) ⇓ num[n1 ·n2]

e1 ⇓ str[s1] e2 ⇓ str[s2]

cat(e1;e2) ⇓ str[s1s2]

e ⇓ str[s] |s|= n

len(e) ⇓ num[n]
e1 ⇓ e′1 [e′1/x]e2 ⇓ e′2

let(e1;x.e2) ⇓ e′2

B Statics of E

Γ ` e : τ

x : τ ∈ Γ

Γ ` x : τ Γ ` num[n] : num Γ ` str[s] : str

Γ ` e1 : num Γ ` e2 : num

Γ ` plus(e1;e2) : num

Γ ` e1 : num Γ ` e2 : num

Γ ` times(e1;e2) : num

Γ ` e1 : str Γ ` e2 : str

Γ ` cat(e1;e2) : str

Γ ` e : str

Γ ` len(e) : num

Γ ` e1 : τ1 Γ,x : τ1 ` e2 : τ2

Γ ` let(e1;x.e2) : τ2

4

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

PREVIE
W

36 4.2 Type System

trated by example. The following chart summarizes the abstract and concrete syntax of E.

Typ τ ::= num num numbers
str str strings

Exp e ::= x x variable
num[n] n numeral
str[s] ”s” literal
plus(e1; e2) e1 + e2 addition
times(e1; e2) e1 ∗ e2 multiplication
cat(e1; e2) e1 ^ e2 concatenation
len(e) |e| length
let(e1; x.e2) let x be e1 in e2 definition

This chart defines two sorts, Typ, ranged over by τ, and Exp, ranged over by e. The chart de-
fines a set of operators and their arities. For example, it specifies that the operator let has arity
(Exp, Exp.Exp)Exp, which specifies that it has two arguments of sort Exp, and binds a variable of
sort Exp in the second argument.

4.2 Type System

The role of a type system is to impose constraints on the formations of phrases that are sensitive to
the context in which they occur. For example, whether the expression plus(x; num[n]) is sensible
depends on whether the variable x is restricted to have type num in the surrounding context of
the expression. This example is, in fact, illustrative of the general case, in that the only informa-
tion required about the context of an expression is the type of the variables within whose scope
the expression lies. Consequently, the statics of E consists of an inductive definition of generic
hypothetical judgments of the form

X | Γ ` e : τ,

where X is a finite set of variables, and Γ is a typing context consisting of hypotheses of the form
x : τ, one for each x ∈ X . We rely on typographical conventions to determine the set of variables,
using the letters x and y to stand for them. We write x /∈ dom(Γ) to say that there is no assumption
in Γ of the form x : τ for any type τ, in which case we say that the variable x is fresh for Γ.

The rules defining the statics of E are as follows:

Γ, x : τ ` x : τ (4.1a)

Γ ` str[s] : str (4.1b)

Γ ` num[n] : num (4.1c)

Γ ` e1 : num Γ ` e2 : num
Γ ` plus(e1; e2) : num

(4.1d)

Γ ` e1 : num Γ ` e2 : num
Γ ` times(e1; e2) : num

(4.1e)

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

