Meeting 9: Imperative Computation

HEY DAD, KMOW BY GINING WORDS NEW To THAT END, I'LL BE DONT You THINK [ MARVY.
WHAT T FIGURED MEANINGS, ORDINARY INVENTING NEW DEFINITIONS| | THATS TOTALY |  FAB,
QUT? THE ENGLISH CAN BECOME AN | FOR COMMON WORDS, SO SPAM? TS FAR QUT.
MEANING OF .
WORDS 1SNT

EXCLUSIONARY CODE/ TWO | WELL BE UNABLE TO LUBRICATED *
GEMERATIONS TAN BE COMMUNICATE . WELL, I'M
DIVIDED BY THE SAME

LANGUAGE !
W '
\ ~

o)

A FIXED THING ! PS

Announcements

e Homework 2 due next week: Friday at 6:00pm
e Some Homework 0 feedback in GitHub
e Upcoming with Sean:
M o Thu11:451t0 12 |Feedback sessions ("interview light"). Schedule 5 minutes to
Z discuss your homework feedback via moodle. Bring your homework (either ready on
your laptop or print out) and a question.
o Fri 10 to 11: Group tutoring session ("recitation light"). Come ask questions about the
prior homework, ask to see steps worked out in detail.
o Tue 11:45to0 12 |Individual tutoring hours (office hours).

Questions

e Some remaining questions from Homework 1
o Walk through Chapter 3
o Contextual dynamics (with proof of 5.4)
o Equational dynamics


Bor-Yuh Evan Chang


Assignment #2:
Language Design and Implementation

CSCI 5535 / ECEN 5533: Fundamentals of Programming Languages
Spring 2018: Due Friday, February 23, 2018

The tasks in this homework ask you to formalize and prove meta-theoretical properties of
an imperative core language IMP based on your experience with E. This homework also asks
you to implement an extension of E in OCaml to gain experience translating formalization to
implementation.

g

1 Language Design: IMP & U’?‘ﬂ' e,l l (Cﬁ)“&'d"

In this section, we will formalize a variant of IMP from Chapter 2 of FSPL based on our experi-
ence from Homework Assignment 1. Consider the following syntax chart for IMP:

Typ 1 == num num numbers
bool bool booleans
Exp e := addrlal a addresses (or “assignables”)
num| 7] n numeral
bool[b] b boolean l,,_ﬂ-..@g-—r-‘)”'
plus(e;;e) e +e addition
times(e;;e) e *xe multiplication
eq(er; e) ep==e equal
le(er; e) ep<=e less-than-or-equal YCJ
not(e;) lep negation
and(e;; e) e && e conjunction #"‘ -cmq'
or(e;;e») elle disjunction ol “
Cmd ¢ = setldl(e) a=e assignment
skip skip skip
y - (ﬁ""}) ?;?e(.ccl;.ci)) clf, 1)) sequeln?cing
" C1; Co if ethenc; elsecy, conditional
while(e;c;) whileedoc looping
Addr a

Addresses a represent static memory store locations and are drawn from some unbounded
set Addr. For simplicity, we fix all memory locations to only store numbers (as in FSPL). A store
o is thus a mapping from addresses to numbers, written as follows:

o = -lo,a—n

1


Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang


Extra Credit. Complete this section where instead memory locations can store any values (i.e.,
numbers or booleans).

1.1. Formalize the statics for IMP with two judgment forms e: 7 and cok.

1.2. Formalize the dynamics for IMP by the following:
(a) Define values and final states eval and ¢epen=fine [ ‘q._&

(b) Define a big-step operational semantics with the judgment forms {e,o) |} € and (c,0) |

o'

(c) Define a small-step operational semantics with the judgment forms {e,a) — (¢,0’)
and (c,0) — (c,0").

(d) State canonical forms. Then, state and prove progress and preservation.

2 Language Implementation: T with Products and Sums

3 Final Project Preparation


Bor-Yuh Evan Chang


Tmpastn_  Covuteton

(et moheey ol copuichan 7

rFMM -5 “"‘"’2 ki L\Mﬂ)'a
O “Podmchy” oF tgmphipty

L(\*g*? -5 43 he ok dida

I-Mb swc&ww'\
T wée  meyfr “Mh



Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang


e, Q%,q /?c,,ob \w%'_]

| g e Hoe Bt o
(e,o'W@.ob‘: CPIUERD | ok
FL JY /sﬁnwﬁ\“\ﬂy /WS
&)2-7‘-9@‘,04?) (<Q oY1= <C‘,0\‘> 7
Vs |
|
¢ "6? e
\e,vd i lrc' M 7
—a Shp bl

——

b v


Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang


Ue,cﬂ & eTJ [(cp? da’ J

(¢,0 #&',07D

G, 0 780s4,0>  Cakp, oD U0

,<c" 0 g’ <c,,0~'?&0‘"

()6, & ¢

{e, OVl €k
—L Lo, P2 G, oMb,

4
¢ bfe, 0> d) hhke {e,fe, 09k b,

Covylier EpNey b= (aty)
(e, =*e o) U, b



Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang


( |+2) =<


Bor-Yuh Evan Chang

Bor-Yuh Evan Chang




















