Meeting 9: Imperative Computation

Announcements

- Homework 2 due next week: Friday at 6:00pm
- Some Homework 0 feedback in GitHub
- Upcoming with Sean:
 - Thu 11:45 to 12 Feedback sessions ("interview light"). Schedule 5 minutes to discuss your homework feedback via moodle. Bring your homework (either ready on your laptop or print out) and a question.
 - Fri 10 to 11: Group tutoring session ("recitation light"). Come ask questions about the prior homework, ask to see steps worked out in detail.
 - Tue 11:45 to 12 Individual tutoring hours (office hours).

Questions

- Some remaining questions from Homework 1
 - Walk through Chapter 3
 - Contextual dynamics (with proof of 5.4)
 - Equational dynamics
Assignment #2:
Language Design and Implementation

CSCI 5535 / ECEN 5533: Fundamentals of Programming Languages
Spring 2018: Due Friday, February 23, 2018

The tasks in this homework ask you to formalize and prove meta-theoretical properties of an imperative core language IMP based on your experience with E. This homework also asks you to implement an extension of E in OCaml to gain experience translating formalization to implementation.

1 Language Design: IMP

In this section, we will formalize a variant of IMP from Chapter 2 of FSPL based on our experience from Homework Assignment 1. Consider the following syntax chart for IMP:

Typ \(\tau \) ::= num num numbers
bool bool booleans
Exp \(e \) ::= addr[a] a addresses (or “assignables”)
num[n] n numeral
bool[b] b boolean
plus(e_1; e_2) \(e_1 + e_2 \) addition
times(e_1; e_2) \(e_1 \ast e_2 \) multiplication
eq(e_1; e_2) \(e_1 == e_2 \) equal
le(e_1; e_2) \(e_1 \leq e_2 \) less-than-or-equal
not(e_1) \(!e_1 \) negation
and(e_1; e_2) \(e_1 \&\& e_2 \) conjunction
or(e_1; e_2) \(e_1 || e_2 \) disjunction

Cmd \(c \) ::= set[a](e) \(a := e \) assignment
skip skip skip
seq(c_1; c_2) \(c_1; c_2 \) sequencing
if(e; c_1; c_2) if \(e \) then \(c_1 \) else \(c_2 \) conditional
while(e; c_1) while \(e \) do \(c_1 \) looping

Addr \(a \)

Addresses \(a \) represent static memory store locations and are drawn from some unbounded set Addr. For simplicity, we fix all memory locations to only store numbers (as in FSPL). A store \(\sigma \) is thus a mapping from addresses to numbers, written as follows:

\[\sigma ::= \cdot | \sigma, a \mapsto n \]
Extra Credit. Complete this section where instead memory locations can store any values (i.e., numbers or booleans).

1.1. Formalize the statics for IMP with two judgment forms $e : \tau$ and $c \text{ ok}$.

1.2. Formalize the dynamics for IMP by the following:
 (a) Define values and final states $e \text{ val}$ and $\langle c, \sigma \rangle \text{ final}$.
 (b) Define a big-step operational semantics with the judgment forms $\langle e, \sigma \rangle \Downarrow e'$ and $\langle c, \sigma \rangle \Downarrow \sigma'$.
 (c) Define a small-step operational semantics with the judgment forms $\langle e, \sigma \rangle \longrightarrow \langle e', \sigma' \rangle$ and $\langle c, \sigma \rangle \longrightarrow \langle c', \sigma' \rangle$.
 (d) State canonical forms. Then, state and prove progress and preservation.

2 **Language Implementation: T with Products and Sums**

3 **Final Project Preparation**
Imperative Computation

What characterizes imperative computation?

Functional - is computing by "rewriting" or "reduction" or "simplifying"

\[(1+3)+3 \rightarrow 4+3\]

Code and data are "together"

Imperative separates code and data

The code modifies a memory store
\(\langle e, 0 \rangle \uparrow e' \) vs \(\langle c, 0 \rangle \uparrow c' \)

\(\langle e, 0 \rangle \uparrow \langle e', 0' \rangle \) but no store

\(\langle e, 0 \rangle \uparrow \langle c', 0' \rangle \) because commands can't return "nothing" values

<table>
<thead>
<tr>
<th>eval</th>
</tr>
</thead>
<tbody>
<tr>
<td>n val</td>
</tr>
<tr>
<td>b val</td>
</tr>
</tbody>
</table>

\(\text{c: final} \)

\(\text{skip final} \)
\[\langle e, 0 \rangle \perp e' \]

\[\langle c, 0 \rangle \perp \langle skp, 0 \rangle \]

\[\langle c_1, 0 \rangle \perp \langle skp, 0 \rangle \]

\[\langle c_2, 0 \rangle \perp \langle skp, 0 \rangle \]

\[\langle c_1, c_2, 0 \rangle \perp 0 \]

\[\langle e_1, 0 \rangle \perp e_1' \]

\[\langle e_2, 0 \rangle \perp e_2' \]

\[e_1 = e_2 \]

\[b = (e'_1 = e'_2) \]

\[\langle e_1 \rangle \perp e_1' \]

\[\langle e_2 \rangle \perp e_2' \]

\[\langle e_1, 0 \rangle \perp b \]
(1+2) = 3