
Meeting
9:
Imperative
Computation

Announcements

Homework 2 due next week: Friday at 6:00pm
Some Homework 0 feedback in GitHub
Upcoming with Sean:

Thu 11:45 to 12 Feedback sessions ("interview light"). Schedule 5 minutes to
discuss your homework feedback via moodle. Bring your homework (either ready on
your laptop or print out) and a question.
Fri 10 to 11: Group tutoring session ("recitation light"). Come ask questions about the
prior homework, ask to see steps worked out in detail.
Tue 11:45 to 12 Individual tutoring hours (office hours).

Questions

Some remaining questions from Homework 1
Walk through Chapter 3
Contextual dynamics (with proof of 5.4)
Equational dynamics

Bor-Yuh Evan Chang

Assignment #2:
Language Design and Implementation

CSCI 5535 / ECEN 5533: Fundamentals of Programming Languages

Spring 2018: Due Friday, February 23, 2018

The tasks in this homework ask you to formalize and prove meta-theoretical properties of
an imperative core language IMP based on your experience with E. This homework also asks
you to implement an extension of E in OCaml to gain experience translating formalization to
implementation.

1 Language Design: IMP

In this section, we will formalize a variant of IMP from Chapter 2 of FSPL based on our experi-
ence from Homework Assignment 1. Consider the following syntax chart for IMP:

Typ τ ::= num num numbers
bool bool booleans

Exp e ::= addr[a] a addresses (or “assignables”)
num[n] n numeral
bool[b] b boolean
plus(e1;e2) e1 +e2 addition
times(e1;e2) e1 ∗e2 multiplication
eq(e1;e2) e1 == e2 equal
le(e1;e2) e1 <= e2 less-than-or-equal
not(e1) !e1 negation
and(e1;e2) e1 && e2 conjunction
or(e1;e2) e1 ||e2 disjunction

Cmd c ::= set[a](e) a := e assignment
skip skip skip
seq(c1;c2) c1; c2 sequencing
if(e;c1;c2) if e then c1 else c2 conditional
while(e;c1) while e do c1 looping

Addr a

Addresses a represent static memory store locations and are drawn from some unbounded
set Addr. For simplicity, we fix all memory locations to only store numbers (as in FSPL). A store
σ is thus a mapping from addresses to numbers, written as follows:

σ ::= · |σ,a ,→ n

1

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Extra Credit. Complete this section where instead memory locations can store any values (i.e.,
numbers or booleans).

1.1. Formalize the statics for IMP with two judgment forms e : τ and c ok.

1.2. Formalize the dynamics for IMP by the following:

(a) Define values and final states e val and 〈c,σ〉 final

(b) Define a big-step operational semantics with the judgment forms 〈e,σ〉 ⇓ e′ and 〈c,σ〉 ⇓
σ′.

(c) Define a small-step operational semantics with the judgment forms 〈e,σ〉 7−→ 〈e′,σ′〉
and 〈c,σ〉 7−→ 〈c′,σ′〉.

(d) State canonical forms. Then, state and prove progress and preservation.

2 Language Implementation: T with Products and Sums

3 Final Project Preparation

2

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

