
Meeting
13:
Denotations

Announcements

Homework 3 due next week Friday at 6:00pm

Homework
2
Comments

Time: 29.2 hours avg
Difficulty: 5.4 avg

Issues

Length?

(Part 2 out Wed instead of Mon)

Misunderstanding about the independence of the parts. Prioritization of the parts (no point
values)?

LaTeX taking time

"The sheer amount of latex / OCaml code was the hardest part of the assignment.

Not enough time earlier in the course to get familiar with OCaml

"Doubts remain and keep pending and keep adding ... probably because the lectures do
not cover a good percentage of what is asked in the homework assignments. "

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Positives

"What I liked about this hw is that it helped me get started with OCaml and the conversion
of proofs into code. It also was a nice test to be able to extend the proofs of preservation
and progress from hw01."
"Before I mention the part I disliked, I want to preface it with the comment that I am
thoroughly enjoying the course material, and that I am extremely appreciative of the
amount of effort that goes into giving us the starting LaTeX file and OCaml testing setup."

Questions

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Assignment #3:
Language Design and Implementation

CSCI 5535 / ECEN 5533: Fundamentals of Programming Languages

Spring 2018: Due Friday, March 9, 2018

This homework has two parts. The first asks you to consider the relationship between a de-
notational formalization and an operational one. The second asks you to extend your language
implementation in OCaml to further gain experience translating formalization to implementa-
tion.

1 Denotational Semantics: IMP

Recall the syntax chart for IMP:

Typ τ ::= num num numbers
bool bool booleans

Exp e ::= addr[a] a addresses (or “assignables”)
num[n] n numeral
bool[b] b boolean
plus(e1;e2) e1 +e2 addition
times(e1;e2) e1 ∗e2 multiplication
eq(e1;e2) e1 == e2 equal
le(e1;e2) e1 <= e2 less-than-or-equal
not(e1) !e1 negation
and(e1;e2) e1 && e2 conjunction
or(e1;e2) e1 ||e2 disjunction

Cmd c ::= set[a](e) a := e assignment
skip skip skip
seq(c1;c2) c1; c2 sequencing
if(e;c1;c2) if e then c1 else c2 conditional
while(e;c1) while e do c1 looping

Addr a

As before, addresses a represent static memory store locations and are drawn from some un-
bounded set Addr and all memory locations only store numbers. A store σ is thus a mapping
from addresses to numbers, written as follows:

Store σ ::= · |σ,a ,→ n

1

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

The semantics of IMP is as a formalized in the previous assignment operationally. In this
section, we will consider a denotational formalization.

The set of values Val are the disjoint union of numbers and booleans:

Val v ::= num[n] | bool[b] .

1.1. (a) Formalize the dynamics of IMP as two denotational functions.

�·� : Exp→ (Store*Val)
�·� : Cmd→ (Store* Store)

(b) Prove that your denotational definitions coincide with your operational ones.

i. State the lemma that your definitions for expressions coincide.

ii. Prove the equivalence of your definitions for commands, that is,
(σ,σ′) ∈ �c� if and only if 〈σ,c〉 ⇓σ′.

Begin by copying your definition of 〈σ,c〉 ⇓σ′ from your previous homework sub-
mission.

1.2. Manual Program Verification. Prove the following statement about the denotational se-
mantics of IMP.

If �while e do a := a+2�σ = σ′ such that even(σ(a)), then even(σ′(a))

Unlike in the previous assignment, this time you should use your denotational semantics
for the proof. Hint: your proof should proceed by mathematical induction.

2 Comparing Operational and Denotational Semantics

Regular expressions are commonly used as abstractions for string matching. Here is an abstract
syntax for regular expressions:

r ::= ‘c’ singleton – matches the character c
| empty skip – matches the empty string
| r1 r2 concatenation – matches r1 followed by r2

| r1 | r2 or – matches r1 or r2

| r∗ Kleene star – matches 0 or more occurrences of r

| . matches any single character
| [‘c1’−‘c2’] matches any character between c1 and c2 inclusive
| r+ matches 1 or more occurrences of r
| r ? matches 0 or 1 occurrence of r

We will call the first five cases the primary forms of regular expressions. The last four cases can
be defined in terms of the first five. We also give an abstract grammar for strings (modeled as
lists of characters):

s ::= · empty string
| cs string with first character c and other characters s

2

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

We write “bye" as shorthand for bye·.
We introduce the following big-step operational semantics judgment for regular expression

matching:
` r matches s leaving s′

The interpretation of the judgment is that the regular expression r matches some prefix of the
string s, leaving the suffix s′ unmatched. If s′ = ·, then r matched s exactly. For example,

` ‘h’(‘e’+) matches “hello" leaving “llo"

Note that this operational semantics may be considered non-deterministic because we expect
to be able to derive all three of the following:

` (‘h’ | ‘e’)∗matches “hello" leaving “ello"
` (‘h’ | ‘e’)∗matches “hello" leaving “hello"
` (‘h’ | ‘e’)∗matches “hello" leaving “llo"

We leave the rules of inference defining this judgment unspecified. You may consider giving
this set of inference rules an optional exercise.

Instead, we will use denotational semantics to model the fact that a regular expression can
match a string leaving many possible suffixes. Let Str be the set of all strings, let ℘(Str) be the
powerset of Str, and let RE range over regular expressions. We introduce a semantic function:

�·� :RE→ (S →℘(S))

The interpretation is that �r � is a function that takes in a string-to-be-matched and returns a set
of suffixes. We might intuitively define �·� as follows:

�r �(s) = {s′ | ` r matches s leaving s′}

In general, however, one should not define the denotational semantics in terms of the opera-
tional semantics. Here are two correct semantic functions:

�‘c’�(s) = {s′ | s = ‘c’ :: s′}
�empty�(s) = {s}

2.1. Give the denotational semantics functions for the other three primal regular expressions.
Your semantics functions may not reference the operational semantics.

2.2. We want to update our operational semantics for regular expressions to capture multiple
suffixes. We want our new operational semantics to be deterministic—it should give the
same answer as the denotational semantics above. We introduce a new judgment as fol-
lows:

` r matches s leaving S

And use rules of inference like the following:

` ‘c’matches s leaving {s′ | s = ‘c’ :: s′} ` empty matches s leaving {s}

` r1 matches s leaving S1 ` r2 matches s leaving S2

` r1 | r2 matches s leaving S1 ∪S2

Do one of the following:

3

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

• Either give operational semantics rules of inference for r∗ and r1 r2. Your operational
semantics rules may not reference the denotational semantics. You may not place
a derivation inside a set constructor, as in: {x | ∃y. ` r matches x leaving y}. Each
inference rule must have a finite and fixed set of hypotheses.

• Or argue in one or two sentences that it cannot be done correctly in the given frame-
work. Back up your argument by presenting two attempted but “wrong” rules of in-
ference and show that each one is either unsound or incomplete with respect to our
intuitive notion of regular expression matching.

Part of doing research in any area is getting stuck. When you get stuck, you must be able
to recognize whether “you are just missing something” or “the problem is actually impossi-
ble.”

3 Implementation: General Recursion and Polymorphism

In this section, we will reformulate language ETPS so that it admits general recursion (and
thus non-terminating programs) and parametric polymorphism.

3.1. Adapt your language ETPS with general recursion. That is, replace the language T portion
(primitive recursion with natural numbers) with language PCF from Chapter 19 of PFPL
(general recursion with natural numbers).

3.2. Add recursive types (i.e., language FPC from Chapter 20 of PFPL). While type nat of natu-
ral numbers is definable in FPC, leave the primitive nat in for convenience in testing.

3.3. Add parametric polymorphism (i.e., System F from Chapter 16 of PFPL).

Explain your testing strategy and justify that your test cases attempt to cover your code as
thoroughly as possible (e.g., they attempt to cover different execution paths of your implemen-
tation with each test). Write this explanation as comments alongside your test code.

Follow the “Translating a Language to OCaml” guidance from the previous homework as-
signment.

4

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

Bor-Yuh Evan Chang

