CSCI 5535 Fundamentals of Programming
Languages
Lec 1: Introduction

A

CU Programming Languages
& Verification

1

About me

» Assistant Professor, Dept. of Computer Science

 New to CU Boulder - Joined Fall 2020
* This is my first in-person class!

* Research: Programming Languages and Formal Methods. Applications In
Concurrent and Distributed Systems.

* Best known for Quelea (PLDI 2015) and MRDTs (OOPSLA 2019).

* |n free time: biking (recently bought a Cannondale Trail 8!) , reading (pop-
Gowtham Kaki science is my thing), and strolling aimlessly.

About me

» Assistant Professor, Dept. of Computer Science

e New to CU Boulder - Joined Fall 2020

* This is my first in-person class!

* Research: Programming Languages and Formal Methods. Applications In
Concurrent and Distributed Systems.

* Best known for Quelea (PLDI 2015) and MRDTs (OOPSLA 2019).

* |n free time: biking (recently bought a Cannondale Trail 8!) , reading (pop-
science is my thing), and strolling aimlessly.

it

About CSCI 5535 / ECEN 5533

Mathematical foundations of computer programs and
programming languages.

About CSCI 5535 / ECEN 5533

‘Mathematical foundations of computer programs and
programming languages.

Recall High-School Algebra ...

 Consider the equations:

3x+2y—1=0

f ~2+3y-2=0

* Different but not fundamentally different.

00+

» Different instantiations of ax + by + ¢ = (0

1.0 0.5 J.U 0.5

Recall High-School Algebra ...

* Now consider the equations:
y=3x+2x -1
y=2x—1

o T o » Fundamentally different equations.

* One is quadratic, other is linear.

e Y = ax’ + bx + ¢ is more expressive /

powerful than ax + by + ¢ = 0

Are computer programs analogous to algebraic functions?

Java

(: import java.io.*;
public class Fib
{

public static void main(String args[]) throws IOException

{
FCn){ int n,fl,f2,f3;
return n<4?1:f(--n)+f(--n); BufferedReader br -
, ()+f(); new BufferedReader(new InputStreamReader(System.in));
| h = Integer.parselnt(br.readlLine());
main(a,b){ £1-0:
for(scanf("%d" ,&b);a++<=b;printf("%d ",fCa))); f2=1;
} if(n>0)
{
for(int 1=0; i<n; i++)
{
System.out.println(" "+f1);
f3=Ff1+f2;
fl=f2;
f2=F3;

Are computer programs analogous to algebraic functions?

Java

(: import java.io.*;:
public class Fib
{

public static void main(String args[]) throws IOException

{

f(n){ int n,fl,f2,f3;

P rn N<d?1:fC--mM+fFC--n): BufferedReader br =
1 etu ()+(E new BufferedReader(new InputStreamReader(System.in));

nCa.b){ n = Integer.parselnt(br.readlLine());

main(a, f1=@;

for(scanf("%d" ,&b);a++<=b;printf("%d ",fCa))); f2=1;
} if(n>0)

{
for(int 1=0; i<n; i++)

{

|1

System.out.println(" "+f1);
f3=Ff1+f2;

fl=f2;

f2=F3;

Are computer programs analogous to algebraic functions?

o Java
(: import java.io.*:
public class Fib
{
public static void main(String args[]) throws I0Exception
{
FCn){ int n,fl,f2,f3;
return n<d?1:f(--mM)+fC--n): BufferedReader br =
1 4 < ()+F(E ? new BufferedReader(new InputStreamReader(System.in));
, ~ n = Integer.parselnt(br.readlLine());
main(a,b){ — f1=0;
for(scanf("%d" ,&b);a++<=b;printf("%d ",f(a))); f2=1;
} if(n>0)
{
for(int 1=0; i<n; i++)
{
Q. Is there a mathematics to answer such questions decisively? ?gs’;imé“t-"””ﬂ“(" L3
=tT1+tZ;
f1=f2;
A. Yes! F2F3:
¥
3
¥

h

About CSCI 5535 / ECEN 5533

Mathematical foundations of computer programs and
programming languages.

* To understand fundamental differences among various programming styles and languages.
* o learn various ways in which one can ascribe a meaning to a program.
* To ask precise questions about computer programs and to decisively answer them.

* E.g: “Does this program stably sort a list of numbers?”, “Does this program ever

terminate?” etc.

About CSCI 5535 / ECEN 5533

Mathematical foundations of computer programs and
programming languages.

* To understand fundamental differences among various programming styles and languages.
* o learn various ways in which one can ascribe a meaning to a program.
* Jo ask precise questions about computer programs and to decisively answer them.

* E.g: “Does this program stably sort a list of numbers?”, “Does this program ever

terminate?” etc.

About CSCI 5535 / ECEN 5533

Mathematical foundations of computer programs and
programming languages.

* To understand fundamental differences among various programming styles and languages.
* o learn various ways in which one can ascribe a meaning to a program.
* Jo ask precise questions about computer programs and to decisively answer them.

* E.g: “Does this program stably sort a list of numbers?”, “Does this program ever

terminate?” etc.

“Program Verification”

Prove that a program P satisfies a property ¢

What is a proof?

Theorem 2.30 (Sound). If cvery branch of a semantic argument proof of
I~ F closes, then F is valid.

Completeness is more complicated. We want to show that there exists a PrOOfS we are u Sed to

closed semantic argument proof of 7 [~ I” when I9 is valid. Our strategy is as
follows. We defline a procedure for applying the proof rules. When applving
the quantifﬁc:-;).t%on rulos,_ the _proccdurc sclects valucs frorq a'pr.cdct30rm1n0d ® Info rmal arguments
countably infinite domain. We then show that when some falsifying interpre-
tation I cxists (such that I [~ F') our procedurc constructs, at the limit, a
falsifying interpretation. Therefore, ¥ must be valid if the procedures actu- ® Wa” Of teXt
ally discovers an argument in which all branches are closed. We now proceed
according to this proof plan.

[.et 1D be a countably infinite domain of values vy,vs,v3,... which we ¢ ErI’Or-prOne
can cnumerate in some fixed order. Start the semantic argument by placing
I f= F at the root and marking it as unused. Now assume that the procedure . .
has constructed a partial semantic argument and that cach line is marked as ° Often INCOM prehenSI ble
either used or unused. We deseribe the next iteration.

Sclect the carliest line L : I |= G or L : I [@ in the argument that
is marked unused, and choose the appropriate proof rule to apply according
to the root symbol of G’s parsc tree. To apply a rule, add the appropriate VS
deductions at the end of every open branch that passes through line L; mark
each new deduction as unused; and mark L as used. The application of the
negation rules and the first conjunction rule is then straightforward. Applying
the sccond (branching) conjunction rule introduces a fork at the end of every PrOOfS |n 'th | S CI ass:
open branch, doubling the number of open branches. In applying the second
quantification rule, choose the next domain clement v; that does not appear
in the semantic argument so far. For the first quantification rule, assume that
& has the form Vz. H. Choose the first value v; on which Y. H has not been
instantiated in any ancestor of L. Additionally, consider I = G as a second ® " _
“deduction” of this rule (so that both / <{zx — v;} F H and I G are MaChlne CheCkabIe
added to every branch passing through L and marked as unused). This trick
guarantees that x of Yx. H is instantiated on every domain element without
preventing the rest of the proof from progressing. Finally, close any branch
that has a contradiction resulting from a deduction in this iteration.

* Chain of precise deductions from first principles.

N O A~ OO0 O N O

A B C D E

A B C D E

F

F

G

G

N O A~ O O N O

What is a proof?

Definition: CR(i, j): Knight CanReach the square (i, j)

Theorem: CR(A,8) = CR(F,4)

N O A~ OO0 O N O

A B C D E

A B C D E

F

F

G

G

N O A~ O O N O

What is a proof?

Definition: CR(i, j): Knight CanReach the square (i, j)

Theorem: CR(A,8) = CR(F4)
U NamePremise P,
(P,: CR(A8)) F CR(F4)

What is a proof?

Definition: CR(i, j): Knight CanReach the square (i, j)

Theorem: CR(A,8) = CR(F,4)
U NamePremise P,
(P,: CR(A8)) F CR(F4)
U Invert CR(F4)

(P, : CR(A8)) + CR(D,5) v CR(E,6) vV CR(G,6) v CR(H.5)
vV CR(H3) v CR(G2) v CR(E,2) v CR(D3)

N O A~ O O N O

N O A~ OO0 O N O

=N

N O A~ O O N O

What is a proof?

Definition: CR(i, j): Knight CanReach the square (i, j)

Theorem: CR(A,8) = CR(F 4)
U NamePremise P,
(P,:CRA8)) + CR(F4)
U Invert CR(F,4)
(P, : CR(A8)) + CR(D,5) v CR(E,6) vV CR(G,6) v CR(H.5)
V CR(H3) vV CR(G2) vV CR(E,2) vV CR(D3)
U PickDisjunct CR(D,5)
(P, : CR(A,8)) + CR(D,5)

What is a proof?

Definition: CR(i, j): Knight CanReach the square (i, j)

8 Theorem: CR(A,8) = CR(F.4)
- U NamePremise P,
(P,:CRA8)) + CR(F4)
6 U Invert CR(F.4)
5 (P, : CR(A8)) + CR(D,5) v CR(E,6) vV CR(G,6) v CR(H.5)
4 V CR(H3) vV CR(G2) V CR(E,2) v CR(D3)
3 U PickDisjunct CR(D,5)
, (P, : CR(A,8)) + CR(D,5)
| Invert CR(D,5)

1 (P, : CR(A,8)) + CR(C,7) V CR(B,6) V ...

U PickDisjunct CR(C,7)

(P, : CR(A,8)) + CR(C,7)

What is a proof?

Definition: CR(i, j): Knight CanReach the square (i, j)

Theorem: CR(A,8) = CR(F 4)
U NamePremise P,
(P,:CRA8)) + CR(F4)
I Invert CR(F,4)
(P, : CR(A8)) + CR(D,5) v CR(E,6) vV CR(G,6) v CR(H.5)
vV CR(H3) Vv CR(G2) v CR(E,2) v CR(D3)
U PickDisjunct CR(D,5)
(P, : CR(A8)) + CR(D,5)
| Invert CR(D,5)

N O A~ O O N O

(P, : CR(A,8)) = CR(C/7) vV CR(B,6) V ...
U PickDisjunct CR(C,7)
(P, : CR(A,8)) + CR(C,7)
J Invert CR(C,7)
(P, : CR(A,8)) + CR(A8) v CR(A,6) V CR(E.8) vV CR(E.6)
9

N O A~ OO0 O N O

What is a proof?

Theorem: CR(A,8) = CR(F,4)
U NamePremise P,
(P,: CRA8)) + CR(FA4
U Invert CR(F4)

U PickDisjunct CR(D,5)
(P, : CR(A8)) + CR(D,5)
| Invert CR(D,5)

N O A~ O O N O

(P, : CR(A,8)) = CR(C/7) vV CR(B,6) V ...
U PickDisjunct CR(C,7)
(P, : CR(A,8)) + CR(C,7)
J Invert CR(C,7)
(P, : CR(A8)) + CR(A,8) V CR(A,6) V CR(ES8) vV CR(E,6) = PickDisjunct CR(A,3)
9

Definition: CR(i, j): Knight CanReach the square (i, j)

(P, : CR(A8)) + CR(D,5) v CR(E,6) vV CR(G,6) v CR(H.5)
vV CR(H3) v CR(G2) v CR(E,2) v CR(D3)

(P, : CR(A,8)) + CR(A,8)

N O A~ OO0 O N O

What is a proof?

Theorem: CR(A,8) = CR(F,4)
U NamePremise P,
(P,: CRA8)) + CR(FA4
U Invert CR(F4)

U PickDisjunct CR(D,5)
(P, : CR(A8)) + CR(D,5)
| Invert CR(D,5)

N O A~ O O N O

(P, : CR(A,8)) = CR(C/7) vV CR(B,6) V ...
U PickDisjunct CR(C,7)
(P, : CR(A,8)) + CR(C,7)
J Invert CR(C,7)
(P, : CR(A8)) + CR(A,8) V CR(A,6) V CR(ES8) vV CR(E,6) = PickDisjunct CR(A,3)
9

Definition: CR(i, j): Knight CanReach the square (i, j)

(P, : CR(A8)) + CR(D,5) v CR(E,6) vV CR(G,6) v CR(H.5)
vV CR(H3) v CR(G2) v CR(E,2) v CR(D3)

[rue
A ApplyPremise P,
(P, : CR(A,8)) + CR(A,8)

N O A~ OO0 O N O

What is a proof?

Definition: CR(i, j): Knight CanReach the square (i, j)

Theorem: CR(A,8) = CR(F,4)

\

NamePremise P,
Invert CR(F,4)

PickDisjunct CR(D,S)
Invert CR(D,5)
PickDisjunct CR(C,7)

Invert CR(C,7)
PickDisjunct CR(A,3)

> A machine-checkable proof script!

N O A~ O O N O

 ApplyPremise P, y

We are going to apply such rigorous standards to build proofs of program correctness.

10

Why verify programs?

Because building reliable software is hard. Really hard!

Therac 25 Mars Climate Orbiter Boeing 737 Max 8

“Program testing can be used to show the presence of bugs, but never to show their
absence!” - E W Dijkstra

11

Does Program Verification Scale?

Use of formal methods to verify full-scale software systems is a hot research topic!

» CompCert — fully verified C compiler
Leroy, INRIA

» Vellvm — formalized LLVM IR
Zdancewic, Penn

* Ynot — verified DBMS, web services
Morrisett, Harvard

 Verified Software Toolchain
Appel, Princeton

» Bedrock — web programming, packet filters

Chlipala, MIT
o CertiKOS - certified OS kernel ch\/m
Shao & Ford, Yale verified

LLVM

12

[Slide courtesy: B C Pierce]

Does Program Verification Pay?

~ _|°
~diem

amazon
~—"

facebook

Coag

* A mechanized proof assistant.

* Checks if the proof you write indeed proves the theorem you state. _
Thierry Coquand

* \We make extensive use of Coq in this class. Invented Calculus of Inductive

« Installing Coq (version 8.12 or later): Constructions — theoretical basis for Cog

 From https://coq.inria.fr: You can download a Coq platform binary that includes a dedicated IDE

for Coq called Coqide.

 From https://proofgeneral.github.io: Installs a Cog major mode for Emacs. Best option if you are

already familiar with Emacs.

* Via Opam — the package manager of OCaml. See https://coq.inria.fr/opam-using.html for

instructions. You can combine this with vscoq plugin for vscode: https://github.com/coa-

community/vscoaq.

14

https://coq.inria.fr
https://proofgeneral.github.io/:
https://coq.inria.fr/opam-using.html
https://github.com/coq-community/vscoq
https://github.com/coq-community/vscoq

Evaluation Components

Count Cumulative Weight

8 of 10 40%

Mid-term 1 20%
Course project based on a research paper 1 15%
Final 1 25%

 Cog Assignments: Write proofs in Coq for select exercises.
 One homework each week for 10 weeks. Best 8 scores count towards final grade.

* Due each Friday before the class. Upload your submissions on Canvas (link will be posted on
course website).

* Collaboration is permitted. Plagiarism is not!

15

Evaluation Components

Count Cumulative Weight

Homeworks 8 of 10 40%

1 20%

T T Y B e e T S ST RS 7 T T R TSN T T T TS AT SRR S s
%
p
7
]
|
ST 1 TG R R TR T TN

T e T R R R T T T R Ty N T R e R T R T T R e e G . T

Course project based on a research paper 1 15%

S

Final 1 5%

PP D ey (Ky Lo \Vogoeg: o 24y g e e ¥ o o L erd W P v ¢
a P S T S A R T U S It A - char PN SRR e e e e

& S,

ritten exams.
e Mid-term will be in the class. Sometime in October. Date TBD.
* Final in December. Date and place TBD.

* Doing homework assignments and textbook exercises is a good practice for exams.

16

Evaluation Components

Count Cumulative Weight
Homeworks 8 of 10 40%
Mid-term 1 20%

Selt a research paper from PLDI/ POPL/ OSDI/ SOSP/ NSDI/ SIGCOMM / NeurlPS/ CVPR,;
formalize and prove their meta-theory in Cog.

Alternatively: Formalize a model of a real-world system, and prove interesting properties.
 Eg: Border Gateway Protocol (BGP) guarantees absence of routing loops.
Can be done alone or in groups of two. Expectations are scaled accordingly.

Important: Talk to me before you start the project!
17

TODO for you

Checkout course website: https://csci5535.github.io

Install Coq (v8.12 or later).
Register on course Piazza (link on course website).
Read Preface and Basics chapters from textbook Vol 1 (Logical Foundations)

Download and run (step through) Basics.v file in your chosen Coq IDE.

18

https://csci5535.github.io

