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About me

Gowtham Kaki

• Assistant Professor, Dept. of Computer Science


• New to CU Boulder - Joined Fall 2020


• This is my first in-person class!


• Research: Programming Languages and Formal Methods. Applications in 
Concurrent and Distributed Systems. 


• Best known for Quelea (PLDI 2015) and MRDTs (OOPSLA 2019).


• In free time: biking (recently bought a Cannondale Trail 8!) , reading (pop-
science is my thing), and strolling aimlessly.
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Mathematical foundations of computer programs and 
programming languages.
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Recall High-School Algebra …

3x + 2y − 1 = 0

−2x + 3y − 2 = 0

• Consider the equations:

• Different but not fundamentally different.

• Different instantiations of ax + by + c = 0
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• Now consider the equations:

• Fundamentally different equations.


• One is quadratic, other is linear.

y = 3x2 + 2x − 1

y = 2x − 1

•                                    is more expressive / 
powerful than

y = ax2 + bx + c
ax + by + c = 0

Recall High-School Algebra …
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Are computer programs analogous to algebraic functions?

C Java
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Are computer programs analogous to algebraic functions?

≅
?

C Java

Q. Is there a mathematics to answer such questions decisively?

A. Yes!
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• To understand fundamental differences among various programming styles and languages.


• To learn various ways in which one can ascribe a meaning to a program.


• To ask precise questions about computer programs and to decisively answer them.


• E.g: “Does this program stably sort a list of numbers?”, “Does this program ever 
terminate?” etc.
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• To understand fundamental differences among various programming styles and languages.


• To learn various ways in which one can ascribe a meaning to a program.


• To ask precise questions about computer programs and to decisively answer them.


• E.g: “Does this program stably sort a list of numbers?”, “Does this program ever 
terminate?” etc.

“Program Verification”

Prove that a program  satisfies a property P φ
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What is a proof?

• Informal arguments


• Wall of text


• Error-prone


• Often incomprehensible.

Proofs we are used to:

Proofs in this class:
• Chain of precise deductions from first principles.


• Machine-checkable

Vs
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What is a proof?

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

♞
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What is a proof?

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

⇓ NamePremise P1
⇓ Invert CR(F,4)
⇓ PickDisjunct CR(D,5)
⇓ Invert CR(D,5)
⇓ PickDisjunct CR(C,7)

⇓ Invert CR(C,7)
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⇑ ApplyPremise P1

A machine-checkable proof script!♞

We are going to apply such rigorous standards to build proofs of program correctness.
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Why verify programs?

Because building reliable software is hard. Really hard!

Therac 25 Mars Climate Orbiter Boeing 737 Max 8

“Program testing can be used to show the presence of bugs, but never to show their 
absence!” - E W Dijkstra
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Does Program Verification Scale?

[Slide courtesy: B C Pierce]
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Does Program Verification Pay?
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Coq

• A mechanized proof assistant.


• Checks if the proof you write indeed proves the theorem you state.


• We make extensive use of Coq in this class. 


• Installing Coq (version 8.12 or later):


• From https://coq.inria.fr: You can download a Coq platform binary that includes a dedicated IDE 
for Coq called Coqide.


• From https://proofgeneral.github.io: Installs a Coq major mode for Emacs. Best option if you are 
already familiar with Emacs.


• Via Opam — the package manager of OCaml. See https://coq.inria.fr/opam-using.html for 
instructions. You can combine this with vscoq plugin for vscode: https://github.com/coq-
community/vscoq.  

Thierry Coquand
Invented Calculus of Inductive  

Constructions — theoretical basis for Coq

https://coq.inria.fr
https://proofgeneral.github.io/:
https://coq.inria.fr/opam-using.html
https://github.com/coq-community/vscoq
https://github.com/coq-community/vscoq


Evaluation Components

Item Count Cumulative Weight

Homeworks 8 of 10 40%

Mid-term 1 20%

Course project based on a research paper 1 15%

Final 1 25%
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• Coq Assignments: Write proofs in Coq for select exercises.


• One homework each week for 10 weeks. Best 8 scores count towards final grade.


• Due each Friday before the class. Upload your submissions on Canvas (link will be posted on 
course website).


• Collaboration is permitted. Plagiarism is not!
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• Written exams.


• Mid-term will be in the class. Sometime in October. Date TBD.


• Final in December. Date and place TBD.


• Doing homework assignments and textbook exercises is a good practice for exams.



Evaluation Components

Item Count Cumulative Weight
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Final 1 25%
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• Select a research paper from PLDI/ POPL/ OSDI/ SOSP/ NSDI/ SIGCOMM / NeurIPS/ CVPR; 
formalize and prove their meta-theory in Coq.


• Alternatively: Formalize a model of a real-world system, and prove interesting properties.


• Eg: Border Gateway Protocol (BGP) guarantees absence of routing loops.


• Can be done alone or in groups of two. Expectations are scaled accordingly.


• Important: Talk to me before you start the project!
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TODO for you

• Checkout course website: https://csci5535.github.io 


• Install Coq (v8.12 or later).


• Register on course Piazza (link on course website).


• Read Preface and Basics chapters from textbook Vol 1 (Logical Foundations)


• Download and run (step through) Basics.v file in your chosen Coq IDE.

https://csci5535.github.io

