
CSCI 5535 Fundamentals of Programming
Languages

Lec 1: Introduction

CU Programming Languages  
& Verification

1

About me

Gowtham Kaki

• Assistant Professor, Dept. of Computer Science

• New to CU Boulder - Joined Fall 2020

• This is my first in-person class!

• Research: Programming Languages and Formal Methods. Applications in
Concurrent and Distributed Systems.

• Best known for Quelea (PLDI 2015) and MRDTs (OOPSLA 2019).

• In free time: biking (recently bought a Cannondale Trail 8!) , reading (pop-
science is my thing), and strolling aimlessly.

2

About me

Gowtham Kaki

• Assistant Professor, Dept. of Computer Science

• New to CU Boulder - Joined Fall 2020

• This is my first in-person class!

• Research: Programming Languages and Formal Methods. Applications in
Concurrent and Distributed Systems.

• Best known for Quelea (PLDI 2015) and MRDTs (OOPSLA 2019).

• In free time: biking (recently bought a Cannondale Trail 8!) , reading (pop-
science is my thing), and strolling aimlessly.

2

g-OW-thum

Mathematical foundations of computer programs and
programming languages.

3

About CSCI 5535 / ECEN 5533

Mathematical foundations of computer programs and
programming languages.

3

🤔

About CSCI 5535 / ECEN 5533

4

Recall High-School Algebra …

3x + 2y − 1 = 0

−2x + 3y − 2 = 0

• Consider the equations:

• Different but not fundamentally different.

• Different instantiations of ax + by + c = 0

5

• Now consider the equations:

• Fundamentally different equations.

• One is quadratic, other is linear.

y = 3x2 + 2x − 1

y = 2x − 1

• is more expressive /
powerful than

y = ax2 + bx + c
ax + by + c = 0

Recall High-School Algebra …

6

Are computer programs analogous to algebraic functions?

C Java

6

Are computer programs analogous to algebraic functions?

≅
?

C Java

6

Are computer programs analogous to algebraic functions?

≅
?

C Java

Q. Is there a mathematics to answer such questions decisively?

A. Yes!

About CSCI 5535 / ECEN 5533

Mathematical foundations of computer programs and
programming languages.

7

• To understand fundamental differences among various programming styles and languages.

• To learn various ways in which one can ascribe a meaning to a program.

• To ask precise questions about computer programs and to decisively answer them.

• E.g: “Does this program stably sort a list of numbers?”, “Does this program ever
terminate?” etc.

About CSCI 5535 / ECEN 5533

Mathematical foundations of computer programs and
programming languages.

7

• To understand fundamental differences among various programming styles and languages.

• To learn various ways in which one can ascribe a meaning to a program.

• To ask precise questions about computer programs and to decisively answer them.

• E.g: “Does this program stably sort a list of numbers?”, “Does this program ever
terminate?” etc.

About CSCI 5535 / ECEN 5533

Mathematical foundations of computer programs and
programming languages.

7

• To understand fundamental differences among various programming styles and languages.

• To learn various ways in which one can ascribe a meaning to a program.

• To ask precise questions about computer programs and to decisively answer them.

• E.g: “Does this program stably sort a list of numbers?”, “Does this program ever
terminate?” etc.

“Program Verification”

Prove that a program satisfies a property P φ

8

What is a proof?

• Informal arguments

• Wall of text

• Error-prone

• Often incomprehensible.

Proofs we are used to:

Proofs in this class:
• Chain of precise deductions from first principles.

• Machine-checkable

Vs

9

A B C D E F G H

8

7

6

5

4

3

2

1

A B C D E F G H
8

7

6

5

4

3

2

1

What is a proof?

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

♞

9

A B C D E F G H

8

7

6

5

4

3

2

1

A B C D E F G H
8

7

6

5

4

3

2

1

What is a proof?

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

♞

⇓ NamePremise P1

⟨P1 : CR(A,8)⟩ ⊢ CR(F,4)

9

A B C D E F G H

8

7

6

5

4

3

2

1

A B C D E F G H
8

7

6

5

4

3

2

1

What is a proof?

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

♞

⇓ NamePremise P1

⟨P1 : CR(A,8)⟩ ⊢ CR(F,4)
⇓ Invert CR(F,4)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5) ∨ CR(E,6) ∨ CR(G,6) ∨ CR(H,5)

∨ CR(H3) ∨ CR(G2) ∨ CR(E,2) ∨ CR(D3)

×
× ×

×

×
××

×

9

A B C D E F G H

8

7

6

5

4

3

2

1

A B C D E F G H
8

7

6

5

4

3

2

1

What is a proof?

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

♞

⇓ NamePremise P1

⟨P1 : CR(A,8)⟩ ⊢ CR(F,4)
⇓ Invert CR(F,4)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5) ∨ CR(E,6) ∨ CR(G,6) ∨ CR(H,5)

∨ CR(H3) ∨ CR(G2) ∨ CR(E,2) ∨ CR(D3)
⇓ PickDisjunct CR(D,5)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5)

×

9

A B C D E F G H

8

7

6

5

4

3

2

1

A B C D E F G H
8

7

6

5

4

3

2

1

What is a proof?

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

♞

⇓ NamePremise P1

⟨P1 : CR(A,8)⟩ ⊢ CR(F,4)
⇓ Invert CR(F,4)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5) ∨ CR(E,6) ∨ CR(G,6) ∨ CR(H,5)

∨ CR(H3) ∨ CR(G2) ∨ CR(E,2) ∨ CR(D3)
⇓ PickDisjunct CR(D,5)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5)
⇓ Invert CR(D,5)

⟨P1 : CR(A,8)⟩ ⊢ CR(C,7) ∨ CR(B,6) ∨ …

⇓ PickDisjunct CR(C,7)

⟨P1 : CR(A,8)⟩ ⊢ CR(C,7)

×

9

A B C D E F G H

8

7

6

5

4

3

2

1

A B C D E F G H
8

7

6

5

4

3

2

1

What is a proof?

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

♞

⇓ NamePremise P1

⟨P1 : CR(A,8)⟩ ⊢ CR(F,4)
⇓ Invert CR(F,4)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5) ∨ CR(E,6) ∨ CR(G,6) ∨ CR(H,5)

∨ CR(H3) ∨ CR(G2) ∨ CR(E,2) ∨ CR(D3)
⇓ PickDisjunct CR(D,5)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5)
⇓ Invert CR(D,5)

⟨P1 : CR(A,8)⟩ ⊢ CR(C,7) ∨ CR(B,6) ∨ …

⇓ PickDisjunct CR(C,7)

⟨P1 : CR(A,8)⟩ ⊢ CR(C,7)

⟨P1 : CR(A,8)⟩ ⊢ CR(A,8) ∨ CR(A,6) ∨ CR(E.8) ∨ CR(E,6)

⇓ Invert CR(C,7)

×

9

A B C D E F G H

8

7

6

5

4

3

2

1

A B C D E F G H
8

7

6

5

4

3

2

1

What is a proof?

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

♞

⇓ NamePremise P1

⟨P1 : CR(A,8)⟩ ⊢ CR(F,4)
⇓ Invert CR(F,4)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5) ∨ CR(E,6) ∨ CR(G,6) ∨ CR(H,5)

∨ CR(H3) ∨ CR(G2) ∨ CR(E,2) ∨ CR(D3)
⇓ PickDisjunct CR(D,5)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5)
⇓ Invert CR(D,5)

⟨P1 : CR(A,8)⟩ ⊢ CR(C,7) ∨ CR(B,6) ∨ …

⇓ PickDisjunct CR(C,7)

⟨P1 : CR(A,8)⟩ ⊢ CR(C,7)

⟨P1 : CR(A,8)⟩ ⊢ CR(A,8) ∨ CR(A,6) ∨ CR(E.8) ∨ CR(E,6)

⇓ Invert CR(C,7)

⇒ PickDisjunct CR(A,8) ⟨P1 : CR(A,8)⟩ ⊢ CR(A,8)

×

9

A B C D E F G H

8

7

6

5

4

3

2

1

A B C D E F G H
8

7

6

5

4

3

2

1

What is a proof?

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

♞

⇓ NamePremise P1

⟨P1 : CR(A,8)⟩ ⊢ CR(F,4)
⇓ Invert CR(F,4)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5) ∨ CR(E,6) ∨ CR(G,6) ∨ CR(H,5)

∨ CR(H3) ∨ CR(G2) ∨ CR(E,2) ∨ CR(D3)
⇓ PickDisjunct CR(D,5)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5)
⇓ Invert CR(D,5)

⟨P1 : CR(A,8)⟩ ⊢ CR(C,7) ∨ CR(B,6) ∨ …

⇓ PickDisjunct CR(C,7)

⟨P1 : CR(A,8)⟩ ⊢ CR(C,7)

⟨P1 : CR(A,8)⟩ ⊢ CR(A,8) ∨ CR(A,6) ∨ CR(E.8) ∨ CR(E,6)

⇓ Invert CR(C,7)

⇒ PickDisjunct CR(A,8) ⟨P1 : CR(A,8)⟩ ⊢ CR(A,8)

⇑ ApplyPremise P1

true

×

10

A B C D E F G H

8

7

6

5

4

3

2

1

A B C D E F G H
8

7

6

5

4

3

2

1

What is a proof?

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

⇓ NamePremise P1
⇓ Invert CR(F,4)
⇓ PickDisjunct CR(D,5)
⇓ Invert CR(D,5)
⇓ PickDisjunct CR(C,7)

⇓ Invert CR(C,7)
⇒ PickDisjunct CR(A,8)

⇑ ApplyPremise P1

A machine-checkable proof script!♞

We are going to apply such rigorous standards to build proofs of program correctness.

11

Why verify programs?

Because building reliable software is hard. Really hard!

Therac 25 Mars Climate Orbiter Boeing 737 Max 8

“Program testing can be used to show the presence of bugs, but never to show their
absence!” - E W Dijkstra

12

Does Program Verification Scale?

[Slide courtesy: B C Pierce]

13

Does Program Verification Pay?

14

Coq

• A mechanized proof assistant.

• Checks if the proof you write indeed proves the theorem you state.

• We make extensive use of Coq in this class.

• Installing Coq (version 8.12 or later):

• From https://coq.inria.fr: You can download a Coq platform binary that includes a dedicated IDE
for Coq called Coqide.

• From https://proofgeneral.github.io: Installs a Coq major mode for Emacs. Best option if you are
already familiar with Emacs.

• Via Opam — the package manager of OCaml. See https://coq.inria.fr/opam-using.html for
instructions. You can combine this with vscoq plugin for vscode: https://github.com/coq-
community/vscoq.

Thierry Coquand
Invented Calculus of Inductive  

Constructions — theoretical basis for Coq

https://coq.inria.fr
https://proofgeneral.github.io/:
https://coq.inria.fr/opam-using.html
https://github.com/coq-community/vscoq
https://github.com/coq-community/vscoq

Evaluation Components

Item Count Cumulative Weight

Homeworks 8 of 10 40%

Mid-term 1 20%

Course project based on a research paper 1 15%

Final 1 25%

15

• Coq Assignments: Write proofs in Coq for select exercises.

• One homework each week for 10 weeks. Best 8 scores count towards final grade.

• Due each Friday before the class. Upload your submissions on Canvas (link will be posted on
course website).

• Collaboration is permitted. Plagiarism is not!

Evaluation Components

Item Count Cumulative Weight

Homeworks 8 of 10 40%

Mid-term 1 20%

Course project based on a research paper 1 15%

Final 1 25%

16

• Written exams.

• Mid-term will be in the class. Sometime in October. Date TBD.

• Final in December. Date and place TBD.

• Doing homework assignments and textbook exercises is a good practice for exams.

Evaluation Components

Item Count Cumulative Weight

Homeworks 8 of 10 40%

Mid-term 1 20%

Course project based on a research paper 1 15%

Final 1 25%

17

• Select a research paper from PLDI/ POPL/ OSDI/ SOSP/ NSDI/ SIGCOMM / NeurIPS/ CVPR;
formalize and prove their meta-theory in Coq.

• Alternatively: Formalize a model of a real-world system, and prove interesting properties.

• Eg: Border Gateway Protocol (BGP) guarantees absence of routing loops.

• Can be done alone or in groups of two. Expectations are scaled accordingly.

• Important: Talk to me before you start the project!

18

TODO for you

• Checkout course website: https://csci5535.github.io

• Install Coq (v8.12 or later).

• Register on course Piazza (link on course website).

• Read Preface and Basics chapters from textbook Vol 1 (Logical Foundations)

• Download and run (step through) Basics.v file in your chosen Coq IDE.

https://csci5535.github.io

