A puzzle or a dilemma T

Suppose I want to slay crashing programs
before they have a chance to run (=static
type safety).

Do I let this one go?

let ¢ = ref (fun x -> X) in
c:=(funx ->x +1)

¢ := (fun x -> not x)

lc true

Fundamentals of
Programming Languages

Bor-Yuh Evan Chang
Meeting 1: Welcome

CSCI 5535, Fall 2023
cscibb35.cs.colorado.edu/f23

Getting to Know You: "I, .., wonder .."

Hi my name Is

Distraction-Free Classroom

» Let's turn off our cell phones and wi-fi

Distraction-Free Classroom

» If you have a need to use a laptop,
please discuss with me after class

@/!

\

Introductions: Your guide this semester

- Office Hours: Tue 3:15-4 ECCS 114F, Thu 1-1:45 ECCS
1147

Introductions

* Who am I?
+ About you?
- What do you want to get out of this class?

Introductions

» Introduce yourself to someone you
haven't met before. [credit Boulder
New Tech Meetup]

- Two minutesl!

HW: Post on Piazza

* Introduce yourself. Include one thing your
classmates probably don't know about you.

* Background
- Comfort with functional programming?
- Comfort with mathematical logic and induction?

- Experience with building language tools
(interpreters, translators)?

- What do you want out of this class?
- Can be a separate private note to me

Focusing on guiding towards

understanding ... foundational subset of

* Project-based course: Formalize‘a
programming language
- Incrementally in homework assignments

- Generally: two weeks of discussion towards
completing the assignment, driven by you (in
class + on Piazza)!

- Assignments due Eriday Saturday
- No late submissions but generous “redo”
policy

10

Traditional Format Our Class

Why are we
learning this?

So that’ s how
you solve
guestion 3!

Discussion, discussion, discussion

- Discussion, not lecture
- Only meeting I will use slides

* Please interrupt at any timel
+ It's completely ok to say:

- T don't understand. Please say it another way.
- Slow down!

» Course is project-based
- Lab assignments prompt the discussion

- Expectation on you to be active ;

Oath

13

Lab Assignment Schedule

+ Week 1

- Sun: Lab released

* Week 2
- Fri: Lab due at 6pm

14

Succeeding in 5535

* Engage and be active

- Week 1 Sun-Mon: Review previous lab and
read new chapter immediately

- Week 1 Wed: Resolve any questions from
previous lab or set up for new lab

- Week 2 Fri: Submit and enjoy the weekend!

- How not to succeed: Start the lab in
Week 2

15

Administrivia

- Public Website: csci5535.cs.colorado.edu/f23
- hotes, resources, etfc.

+ Course-Specific: Canvas

- grades, feedback, etc.

- discussion forum: Piazza
- lab repositories: GitHub (via GitHub Classroom)

16

Today

» What this course is and is not
» Tell some stories

» Goals for this course

* Requirements and grading

- Course summary
+ Start HWO

» Convince you that PL is cool and useful

17

"Isn't PL a solved problem?”

+ We have lots of programming languages. Go home?
* What do you think this course is about?

Zadh ' Not Hust symteps Address «l&i probe Cotary
Yodh k" D@?,, gulerns ‘WWZL’

M}ﬂjai Uy dp o ots ot PLT
(,C)Jv)!/\(/’\,(/‘° M yawf Bomar ,\'/ufﬁv‘ca’ﬁoj

18

"Isn't PL a solved problem?”

19

"Isn't PL a solved problem?”

20

"Isn't PL a solved problem?”

21

ilers?

New and Better Comp

19 Mar 97

DOCTOR FUN

Joipne ay) Jo asoif) LJafos a1k Ut passasdxa suonundo

"A[UO BUIMAIA [R10s.1ad 10] 12UINU] I U0 IJRITRAR PRI S| UOOLIED STYL
[Ny unjip/oae(E—-o.u—-—-.@_«_m—sw\\na—u_«-—

WIOD JRIZI)MAI[ARY-P ‘A1, prae(L661 O Worisdo)

a
W
T
<
2
2
<

22

Progress

iew of PL Research

A Dismal V

19 Mar 97

DOCTOR FUN

Joipne ay) Jo asoif) LJafos a1k Ut passasdxa suonundo

"A[UO BUIMAIA [R10s.1ad 10] 12UINU] I U0 IJRITRAR PRI S| UOOLIED STYL
[Ny unjip/oae(E—-o.u—-—-.@_«_m—sw\\na—u_«-—

WIOD JRIZI)MAI[ARY-P ‘A1, prae(L661 O Worisdo)

23

Progress

Programming Languages

Touches most other areas of CS

- Theory: DFAs, TMs, language theory (e.g., LALR)

- Systems: system calls, memory management

- Arch: compiler targets, optimizations, stack frames
- Numerics: FORTRAN, IEEE FP, Matlab

- AT: theorem proving, search

- DB: SQL, transactions

- Networking: packet filters, protocols

- Graphics: OpenGL, LaTeX, PostScript

- Security: buffer overruns, NET, bytecode, PCC, ...
- Computational Biology: pathway models

- Software Engineering: software quality, development tools
- Human Computer Interaction: development tools

Both theory (math) and practice (engineering) ”

Overarching Theme

» T assert (and shall convince you) that

* PL is one of the most vibrant and active
areas of CS research today

- It is both theoretical and practical
- It intersects most other CS areas

* You will be able to use PL techniques in
your owh projects

25

Goals

Goal 1

Learn to use advanced PL
TeChniques ﬁ mathematical reasoning

about computation

www.phdcomics.com

No Useless Memorization

» T will not waste your time with useless
memorization

» This course will cover complex subjects

» T will teach their details to help you
understand them the first time

» But you will never have to memorize
anything low-level

* Rather, learn to apply broad concepts

28

Goal 2

When (not if) you design a
language, it will avoid the
mistakes of the past, and you
will be able to describe it

formally

Story: The Clash of Two Features

* Real story about bad programming
language design

» Cast includes famous scientists

* ML ('82) functional language with
polymorphism and monomorphic
references (i.e., pointers)

» Standard ML ('85) innovates by adding
polymorphic references

+ It took 10 years to fix the "innovation”

41

Polymorphism (Informal)

Code that works uniformly on various types of data

Examples of function signatures:
length @ a list - int (takes an argument of type "list of o”,
returns an integer, for any type o)
head :alist > «a

Type inference:

- generalize all elements of the input type that are not used by
the computation

42

References in Standard ML

+ Like "updatable pointers" in C
+ Type constructor: t ref

X . int ref "X is a pointer to an integer”

+ Expressions:
ref : 1t — 1t ref
(allocate a cell to store a 1, like malloc)
le : twhene: tref
(read through a pointer, like *e)
e:=e withe:trefande : ¢
(write through a pointer, like *e = ¢')
+ Works just as you might expect

43

Polymorphic References: A Major Pain

Consider the following program fragment:

Code Type inference

fun id(x) = x id:a— «a (for any o)

val ¢ = ref id c:(a— a)ref (foranya)
funinc(x)=x+1 inc:int — int

c:=inc Ok, since c : (int — int) ref
(Ic) (true) e Ok, since c : (bool — bool) ref

VYA
S

44

Reconciling Polymorphism and
References

» Type system fails to prevent a type error!

+ Commonly accepted solution today:

- value restriction: generalize only the type of
values!

» easy to use, simple proof of soundness
- many "failed fixes"

+ To see what went wrong we need to
understand semantics, type systems,
polymorphism and references

45

Story: Java Bytecode Subroutines

- Java bytecode programs contain subroutines
(jsr) that run in the caller's stack frame (why?)

+ jsr complicates the formal semantics of
bytecodes

- Several verifier bugs were in code implementing jsr

- 30% of typing rules, 50% of soundness proof due to jsr

» Tt is not worth it:

- In 650K lines of Java code, 230 subroutines, saving
2427 bytes, or 0.02%

- 13 times more space could be saved by renaming the
language back to Oak

46

Recall Goal 2

When (not if) you design a
language, it will avoid the
mistakes of the past, and you
will be able to describe it

formally

47

Goal 3

e.g., how do we get "good"
programs from AI?

Understand current PL
research (POPL, PLDI,
OOPSLA, ICFP, TOPLAS, ..)

48

Most Important Goal

Have Lots of Funl

49

Requirements

Prerequisites

» "Programming experience”

- exposure to various language constructs
(imperative and functional) and their
meaning/implementation (e.g., CSCI 3155)

- ideal: undergraduate compilers (e.g., CSCI 4555)

+ "Mathematical maturity”

- we'll use formal notation to describe the meaning of
programs

- expected: familiarity with logic and rigorous proofs

» If you are an undergraduate or from another
department, please see me. 51

Assignments

» Reading and participation (each meeting)
- Homework (for ~half semester)

* Final exam

* Final project

I CANT BELIENE IT/ | I HAVE TO WRITE A TlIL NEVZR BE \RLE | V7
HOMEWORK. ALREADY ! | PARAGRAPH ON WHAT '
I JUST GOT BACK. TO | T DID OVER THE SUMMER! TO WRITE THAT MUCH!

oo AWIOEWZ?W
5 & /
! 0 P3N

NOT SO GOQD.
HOWS 1T | WHAT DID YOU
COMING? | DO BESIDES
WATCH TV 7

Reading and Participation

* Readings
- Spark class discussion, post/bring questions
- Background and context for homeworks

* "A moment’'s thought" on Piazza

- Post 1+ substantive comment, question, or
answer for each class meeting

- Due before the next meeting

53

What is “substantive”?

* May be less than a blog post but more than a
Tweet.

+ Some examples:

- Questions

- Thoughtful answers

- Clarification of some point

- What you think is the main point in the reading set.
- An idea of how some work could be improved

* Intent: take a moment to reflect on the day's
reading/discussion (no7 to go scour the web)

54

Homework and Exam

* Homework/Problem Sets
- Where the "real” learning happens
- "Math" (logic) + "Programming”
- Encourage mastery: "redos”

- Due Eridays Saturdays
- Collaborate with peers (but acknowledgel)

- Final Exam

55

Final Project

- Options:

- Research project

- Literature survey

- Implementation project

* Write a ~5-8 page paper (conference-like)
+ Give a ~15-20 minute presentation
* On a topic of your choice
- Ideal: integrate PL with your research
» ~Pair projects

56

Possible Special Topics

+ Types for resource management (Rust)
* Heap reasoning

* Program synthesis

* Neurosymbolic programming

* What do you want to explore?

57

Example Application: Model Checking

Verify properties or find bugs in software

Take an important program (e.g., a device driver)
Merge it with a property (e.g., no deadlocks)
Transform the result into a boolean program

Use a model checker to exhaustively explore the
resulting state space
- Result 1: program provably satisfies property

- Result 2: program violates property "right here on line
92 376" prog property rig

WAIT A MINUTE! [NO, YOU'RE

HEX DAD, 1'L
GUESS ANY
NUMBER YOURE
THINKING OF ! 4
GO AHEAD, i

MM 0K,
I'VE GOT (T,

\M/L

~
-
-

%5

For Next Time

* Read the course syllabus
cscibH35.cs.colorado.edu/f23

» Join the course Canvas, Piazza (via
Canvas), get on GitHub, upload a profile
picture, and introduce yourself

59

