
A puzzle or a dilemma

Suppose I want to slay crashing programs
before they have a chance to run (=static
type safety).

Do I let this one go?

 let c = ref (fun x -> x) in
 c := (fun x -> x + 1)
 c := (fun x -> not x)
 !c true

1

Fundamentals of
Programming Languages

Bor-Yuh Evan Chang

Meeting 1: Welcome

CSCI 5535, Fall 2023
csci5535.cs.colorado.edu/f23

Getting to Know You: “I, …, wonder …”

3

Distraction-Free Classroom

• Let’s turn off our cell phones and wi-fi

4

Distraction-Free Classroom

• If you have a need to use a laptop,
please discuss with me after class

5

Introductions: Your guide this semester

• Office Hours: Tue 3:15-4 ECCS 114F, Thu 1-1:45 ECCS
114J

6

Introductions

• Who am I?
• About you?

– What do you want to get out of this class?

7

Introductions

• Introduce yourself to someone you
haven’t met before. [credit Boulder
New Tech Meetup]

• Two minutes!

8

HW: Post on Piazza

• Introduce yourself. Include one thing your
classmates probably don't know about you.

• Background
– Comfort with functional programming?
– Comfort with mathematical logic and induction?
– Experience with building language tools

(interpreters, translators)?
– What do you want out of this class?
– Can be a separate private note to me

9

Focusing on guiding towards
understanding …
• Project-based course: Formalize a

programming language
– Incrementally in homework assignments
– Generally: two weeks of discussion towards

completing the assignment, driven by you (in
class + on Piazza)!

– Assignments due Friday Saturday
– No late submissions but generous “redo”

policy

10

foundational subset of

Traditional Format Our Class

Why are we
learning this?

How is this
relevant?

So that’s how
you solve

question 3!

Lecture Lecture Lecture Lecture

Lab Lab

Lecture Lecture Lecture Lecture

Lab Lab

Discussion, discussion, discussion

• Discussion, not lecture
– Only meeting I will use slides

• Please interrupt at any time!
• It’s completely ok to say:

– I don’t understand. Please say it another way.
– Slow down!

• Course is project-based
– Lab assignments prompt the discussion
– Expectation on you to be active

12

Oath

13

Lab Assignment Schedule

• Week 1
– Sun: Lab released

• Week 2
– Fri: Lab due at 6pm

14

Succeeding in 5535

• Engage and be active
– Week 1 Sun-Mon: Review previous lab and

read new chapter immediately
– Week 1 Wed: Resolve any questions from

previous lab or set up for new lab
– Week 2 Fri: Submit and enjoy the weekend!

• How not to succeed: Start the lab in
Week 2

15

16

Administrivia

• Public Website: csci5535.cs.colorado.edu/f23
– notes, resources, etc.

• Course-Specific: Canvas
– grades, feedback, etc.
– discussion forum: Piazza
– lab repositories: GitHub (via GitHub Classroom)

Today

• What this course is and is not
• Tell some stories
• Goals for this course
• Requirements and grading
• Course summary
• Start HW0

• Convince you that PL is cool and useful
17

“Isn’t PL a solved problem?”

• We have lots of programming languages. Go home?
• What do you think this course is about?

18

“Isn’t PL a solved problem?”

19

“Isn’t PL a solved problem?”

20

“Isn’t PL a solved problem?”

21

New and Better Compilers?

22

A Dismal View of PL Research

23

C++

Java

Programming Languages

• Touches most other areas of CS
– Theory: DFAs, TMs, language theory (e.g., LALR)
– Systems: system calls, memory management
– Arch: compiler targets, optimizations, stack frames
– Numerics: FORTRAN, IEEE FP, Matlab
– AI: theorem proving, search
– DB: SQL, transactions
– Networking: packet filters, protocols
– Graphics: OpenGL, LaTeX, PostScript
– Security: buffer overruns, .NET, bytecode, PCC, …
– Computational Biology: pathway models
– Software Engineering: software quality, development tools
– Human Computer Interaction: development tools

• Both theory (math) and practice (engineering) 24

Overarching Theme

• I assert (and shall convince you) that

• PL is one of the most vibrant and active
areas of CS research today
– It is both theoretical and practical
– It intersects most other CS areas

• You will be able to use PL techniques in
your own projects

25

Goals

Goal 1

Learn to use advanced PL
techniques

27

mathematical reasoning
about computation

No Useless Memorization

• I will not waste your time with useless
memorization

• This course will cover complex subjects
• I will teach their details to help you

understand them the first time
• But you will never have to memorize

anything low-level
• Rather, learn to apply broad concepts

28

Goal 2

When (not if) you design a
language, it will avoid the
mistakes of the past, and you
will be able to describe it
formally

29

41

Story: The Clash of Two Features

• Real story about bad programming
language design

• Cast includes famous scientists
• ML (’82) functional language with

polymorphism and monomorphic
references (i.e., pointers)

• Standard ML (’85) innovates by adding
polymorphic references

• It took 10 years to fix the “innovation”

42

Polymorphism (Informal)

• Code that works uniformly on various types of data
• Examples of function signatures:

length : a list ® int (takes an argument of type “list of a”,
 returns an integer, for any type a)
head : a list ® a

• Type inference:
– generalize all elements of the input type that are not used by

the computation

43

References in Standard ML

• Like “updatable pointers” in C
• Type constructor: t ref

x : int ref “x is a pointer to an integer”
• Expressions:

ref : t ® t ref
 (allocate a cell to store a t, like malloc)
!e : t when e : t ref
 (read through a pointer, like *e)
e := e’ with e : t ref and e’ : t
 (write through a pointer, like *e = e’)

• Works just as you might expect

44

Polymorphic References: A Major Pain

Consider the following program fragment:

Code Type inference
fun id(x) = x id : a ® a (for any a)
val c = ref id c : (a ® a) ref (for any a)
fun inc(x) = x + 1 inc : int ® int
c := inc Ok, since c : (int ® int) ref
(!c) (true) Ok, since c : (bool ® bool) ref

45

Reconciling Polymorphism and
References

• Type system fails to prevent a type error!
• Commonly accepted solution today:

– value restriction: generalize only the type of
values!
• easy to use, simple proof of soundness

– many “failed fixes”
• To see what went wrong we need to

understand semantics, type systems,
polymorphism and references

46

Story: Java Bytecode Subroutines

• Java bytecode programs contain subroutines
(jsr) that run in the caller’s stack frame (why?)

• jsr complicates the formal semantics of
bytecodes
– Several verifier bugs were in code implementing jsr
– 30% of typing rules, 50% of soundness proof due to jsr

• It is not worth it:
– In 650K lines of Java code, 230 subroutines, saving

2427 bytes, or 0.02%
– 13 times more space could be saved by renaming the

language back to Oak

Recall Goal 2

When (not if) you design a
language, it will avoid the
mistakes of the past, and you
will be able to describe it
formally

47

Goal 3

Understand current PL
research (POPL, PLDI,
OOPSLA, ICFP, TOPLAS, …)

48

e.g., how do we get “good”
programs from AI?

Most Important Goal

Have Lots of Fun!

49

Requirements

51

Prerequisites

• “Programming experience”
– exposure to various language constructs

(imperative and functional) and their
meaning/implementation (e.g., CSCI 3155)

– ideal: undergraduate compilers (e.g., CSCI 4555)

• “Mathematical maturity”
– we’ll use formal notation to describe the meaning of

programs
– expected: familiarity with logic and rigorous proofs

• If you are an undergraduate or from another
department, please see me.

Assignments

• Reading and participation (each meeting)
• Homework (for ~half semester)
• Final exam
• Final project

52

Reading and Participation

• Readings
– Spark class discussion, post/bring questions
– Background and context for homeworks

• “A moment’s thought” on Piazza
– Post 1+ substantive comment, question, or

answer for each class meeting
– Due before the next meeting

53

What is “substantive”?

• May be less than a blog post but more than a
tweet.

• Some examples:
– Questions
– Thoughtful answers
– Clarification of some point
– What you think is the main point in the reading set.
– An idea of how some work could be improved

• Intent: take a moment to reflect on the day’s
reading/discussion (not to go scour the web)

54

Homework and Exam

• Homework/Problem Sets
– Where the “real” learning happens
– “Math” (logic) + “Programming”
– Encourage mastery: “redos”
– Due Fridays Saturdays
– Collaborate with peers (but acknowledge!)

• Final Exam

55

Final Project

• Options:
– Research project
– Literature survey
– Implementation project

• Write a ~5-8 page paper (conference-like)
• Give a ~15-20 minute presentation
• On a topic of your choice

– Ideal: integrate PL with your research
• ~Pair projects

56

Possible Special Topics

• Types for resource management (Rust)
• Heap reasoning
• Program synthesis
• Neurosymbolic programming

• What do you want to explore?

57

Example Application: Model Checking

• Verify properties or find bugs in software

• Take an important program (e.g., a device driver)
• Merge it with a property (e.g., no deadlocks)
• Transform the result into a boolean program
• Use a model checker to exhaustively explore the

resulting state space
– Result 1: program provably satisfies property
– Result 2: program violates property “right here on line

92,376”!

58

For Next Time

• Read the course syllabus
csci5535.cs.colorado.edu/f23

• Join the course Canvas, Piazza (via
Canvas), get on GitHub, upload a profile
picture, and introduce yourself

59

