
Model Checking:
An Introduction

Meetings 2-4, CSCI 5535, Fall 2023



Week 1

• Homework 0 (“Preliminaries”) out, due 
next Friday

• Today
– Skim an application motivating CSCI 5535

• Next Week
– Begin foundations
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Course Summary



Course At-A-Glance

• Part I: Language Specification and 
Design
– Semantics = Describing programs
– Evaluation strategies, imperative languages
– Textbooks: 

• Robert Harper. Practical Foundations of 
Programming Languages.

• Glynn Winskel. The Formal Semantics of 
Programming Languages.

• Part II: Applications
4



Core Topics

• Semantics
– Operational semantics and types

• rules for execution on an abstract machine
• useful for implementing a compiler or interpreter

– Axiomatic semantics
• logical rules for reasoning about the behavior of a program
• useful for proving program correctness

– Abstract interpretation
• application: program analysis
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But first …



First Topic: Model Checking

• Verify properties or find bugs in software

• Take an important program (e.g., a device driver)
• Merge it with a property (e.g., no deadlocks)
• Transform the result into a boolean program
• Use a model checker to exhaustively explore the 

resulting state space
– Result 1: program provably satisfies property
– Result 2: program violates property “right here on line 

92,376”!
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Who are we again?

• We're going to find critical bugs in important 
bits of software
– using PL techniques!

• You’ll be enthusiastic about this 
– and thus want to learn the gritty details
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Overarching Plan

Model Checking
– Transition systems (i.e., models)
– Temporal properties
– Temporal logics: LTL and CTL
– Explicit-state model checking
– Symbolic model checking

Counterexample Guided Abstraction 
Refinement
– Safety properties
– Predicate abstraction
– Software model checking
– Counterexample feasibility
– Abstraction refinement weakest pre, thrm prv
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Spoiler

• This stuff really works!

• Symbolic model checking is a massive 
success in the model-checking field

• SLAM took the PL world by storm
– Spawned multiple copycat projects
– Launched Microsoft’s Static Driver Verifier 

(released in the Windows DDK)
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Model Checking
There are complete courses in model checking 
(see ECEN 5139, Prof. Somenzi).

Model Checking by Edmund M. Clarke, Orna
Grumberg, and Doron A. Peled.

Symbolic Model Checking by Ken McMillan.

We will skim.



What is Model Checking?  Keywords?
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What is Model Checking?
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Keywords

Model checking is an automated technique
Model checking verifies transition systems 
Model checking verifies temporal properties
Model checking falsifies by generating 

counterexamples

A model checker is a program that checks if 
a (transition) system satisfies a (temporal) 
property

15



Verification vs. Falsification

• What is verification?

• What is falsification?
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Verification vs. Falsification

• An automated verification tool
– can report that the system is verified (with a proof);
– or that the system was not verified.

• When the system was not verified, it would be helpful 
to explain why.
– Model checkers can output an error counterexample: a 

concrete execution scenario that demonstrates the error.
• Can view a model checker as a falsification tool

– The main goal is to find bugs

• So what can we verify or falsify?
17



Temporal Properties

Temporal Property
A property with time-related operators such as 
“invariant” or “eventually”
Invariant(p)
is true in a state if property p is true in every
state on all execution paths starting at that state

G, AG, ¤ (“globally” or “box” or “forall”)

Eventually(p)
is true in a state if property p is true at some state 
on every execution path starting from that state

F, AF, ! (“future” or “diamond” or “exists”)
18



An Example Concurrent Program

19

• A simple concurrent 
mutual exclusion program

• Two processes execute 
asynchronously

• There is a shared variable 
turn

• Two processes use the 
shared variable to ensure 
that they are not in the 
critical section at the 
same time 

• Can be viewed as a 
“fundamental” program: 
any bigger concurrent one 
would include this one

10: while (true) { 
11: wait(turn == 0);

// critical section
12:  work(); turn = 1; 
13: }

|| // concurrently with

20: while (true) { 
21: wait(turn == 1);

// critical section
22: work(); turn = 0;
23: }



Reachable States
of the Example Program

20#20

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

t=0
12,21

t=1
10,20

t=1
11,20

t=1
10,21

t=1
10,22

t=1
11,21

t=1
11,22

Each state is a valuation 
of all the variables:  
turn and the two program 
counters for two processes

10: while (true) { 

11:   wait(turn == 0);

// critical section

12:   work(); turn = 1; 

13: }

|| // concurrently with

20: while (true) { 

21:   wait(turn == 1);

// critical section
22:   work(); turn = 0;

23: }

Next: formalize
this intuition …



Analyzed System is a Transition System

• Labeled transition system
T = (S, I, R, L)

– S = Set of states // standard FSM
– I Í S = Set of initial states // standard FSM
– R Í S ´ S = Transition relation // standard FSM
– L: S ® 2AP = Labeling function // this is new!

• AP: Set of atomic propositions (e.g., “x=5”!AP)
– Atomic propositions capture basic properties 
– For software, atomic props depend on variable values
– The labeling function labels each state with the set 

of propositions true in that state
21

Also called a 
Kripke
Structure



Example Properties of the Program

• “In all the reachable states (configurations) 
of the system, the two processes are never in 
the critical section at the same time”
– “pc1=12”, “pc2=22” are atomic properties for being 

in the critical section 

• “Eventually the first process enters the 
critical section”
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Temporal Logics

There are four basic temporal operators:
• X p

Next p, p holds in the next state
• G p

Globally p, p holds in every state, p is an invariant
• F p

Future p, p will hold in a future state, p holds eventually
• p U q

p Until q, assertion p will hold until q holds

• Precise meaning of these temporal operators 
are defined on execution paths

24

For what?



Execution Paths

• A path in a transition system is an infinite 
sequence of states

(s0, s1, s2, ...), such that "i³0. (si, si+1) Î R
• A path (s0,s1,s2,...) is an execution path if s0 Î I
• Given a path h = (s0, s1, s2, ...) 

– hi denotes the ith state: si
– hi denotes the ith suffix: (si, si+1, si+2, ...) 

• In some temporal logics one can quantify paths 
starting from a state using path quantifiers
– A : for all paths (e.g., A h. ....)
– E : there exists a path (e.g., E h. ...)
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Paths and Predicates

• We write
h ² p

“the path h makes the predicate p true”
– h is a path in a transition system
– p is a temporal logic predicate

• Example:
A h.   h ² G (¬(pc1=12 Ù pc2=22))
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Linear Time Logic (LTL)

• LTL properties are constructed from atomic 
propositions in AP; logical operators Ù, Ú, ¬; 
and temporal operators X, G, F, U.

• The semantics of LTL is defined on paths.

Given a path h:

h ² p  

27



Linear Time Logic (LTL)

Given a path h:
h ² ap iff L(h0, ap) atomic prop
h ² X p iff h1 ² p next
h ² F p iff
h ² G p iff
h ² p U q iff

28

hi denotes the ith state: si
hi denotes the ith suffix: (si, si+1, si+2, ...) 



Satisfying Linear Time Logic

• Given a transition system T = (S, I, R, L) 
and an LTL property p, T satisfies p if 
all paths starting from all initial states I
satisfy p
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Computation Tree Logic (CTL)

• In CTL temporal properties use path 
quantifiers:  A : for all paths, E : there exists a path

• The semantics of CTL is defined on states:
Given a state s
s  ² ap iff L(s, ap)  
s0 ² EX p iff # a path (s0, s1, s2, ...). s1 ² p
s0 ²AX p iff " paths (s0, s1, s2, ...). s1 ² p
s0 ² EG p iff # a path (s0, s1, s2, ...). "i³0. si ² p
s0 ²AG p iff " paths (s0, s1, s2, ...). "i³0. si ² p
…

31

# a path (s0, s1, s2, ...). "i³0. si ² p
" paths (s0, s1, s2, ...). "i³0. si ² p



Linear vs. Branching Time

• LTL is a linear time logic
– When determining if a path satisfies an LTL 

formula we are only concerned with a single path

• CTL is a branching time logic
– When determining if a state satisfies a CTL 

formula we are concerned with multiple paths
– In CTL the computation is instead viewed as a 

computation tree which contains all the paths

32

The expressive powers of CTL and LTL are 
incomparable (LTL ! CTL*, CTL ! CTL*)

– Basic temporal properties can be expressed in both logics 
– Not in this lecture, sorry! (Take a class on Modal Logics)



Recall the Example
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t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

t=0
12,21

t=1
10,20

t=1
11,20

t=1
10,21

t=1
10,22

t=1
11,21

t=1
11,22

This is a labeled
transition system



Linear vs. Branching Time
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t=0
10,20

t=0
10,21

t=0
11,21

t=0
12,21

t=0
10,21

t=0
11,21

t=1
10,21

…

t=0
10,20

t=0
10,21

t=0
11,20

t=0
11,21

t=0
12,20

t=0
10,21

t=0
11,21

t=1
10,20

t=0
12,21

Branching Time 
View

Linear Time 
View

… … …

… …

One path starting at state
(turn=0,pc1=10,pc2=20)

A computation tree 
starting  at  state 
(turn=0,pc1=10,pc2=20)



LTL Satisfiability Examples

On this path:
Holds   Does Not Hold

35

p does not hold p holds

. . .



LTL Satisfiability Examples

On this path:
Holds   Does Not Hold

36

p does not hold p holds

. . .



CTL Satisfiability Examples
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p does not hold
p holds

.

.

.

.

.

.

.

.

.

.

.

.

s At state s:
Holds   Does Not Hold



CTL Satisfiability Examples
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p does not hold
p holds

At state s:
Holds   Does Not Hold

.

.

.

.

.

.

.

.

.

s

.

.

.



Model Checking Complexity

• Given a transition system T = (S, I, R, L) 
and a CTL formula f 
– One can check if a state of the transition 

system satisfies the formula f in
O(|f| ´ (|S| + |R|)) time

– Multiple depth first searches (one for each 
temporal operator)
• explicit-state model checking

41



State Space Explosion

• The complexity of model checking 
increases linearly with respect to the 
size of the transition system (|S| + |R|)

• However, the size of the transition 
system (|S| + |R|) is exponential in the 
number of variables and number of 
concurrent processes

• This exponential increase in the state 
space is called the state space explosion
– Dealing with it is one of the major 

challenges in model checking research 42



Algorithm:
Temporal Properties = Fixpoints
• States that satisfy AG(p) are all the states which are 

not in EF(¬p) (= the states that can reach ¬p)

• Compute EF(¬p) as the fixed point of Func: 2S ® 2S

• Given Z ! S,
– Func(Z) = ¬p È reach-in-one-step(Z)

• Actually, EF(¬p) is the least-fixed point of Func
– smallest set Z such that Z = Func(Z)
– to compute the least fixed point, start the iteration from 

Z=Æ, and apply the Func until you reach a fixed point
– This can be computed (unlike most other fixed points)
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Pictorial Backward Fixed Point

44

¬ pInitial
states

(initial states that violate AG(p))
= (initial states that satisfy 
EF(¬p)) 

•  •  •

(states that can reach ¬p = EF(¬p)) 
= (states that violate AG(p))

(Inverse Image of ¬p) = EX(¬p) 

This fixed point computation can be used for: 

• verification of EF(¬p) 

• or falsification of AG(p)

… and similar fixed points 
handle the other cases



Symbolic Model Checking

• Symbolic model checking represent state sets 
and the transition relation as Boolean logic 
formulas
– Fixed point computations manipulate sets of states 

rather than individual states
– Recall: we needed to compute reach-in-one-step(Z), 

but Z ! S
• Fixed points can be computed by iteratively 

manipulating these formulas
• Use an efficient data structure for 

manipulation of  Boolean logic formulas
– Binary Decision Diagrams (BDDs)

• SMV (Symbolic Model Verifier) was the first 
CTL model checker to use BDDs 45



Building Up To
Software Model Checking 

via Counterexample Guided 
Abstraction Refinement 

There are easily dozens of papers.

We will skim.



Key Terms

• Counterexample guided abstraction 
refinement (CEGAR)
– A successful software model-checking 

approach.  Sometimes called “Iterative 
Abstraction Refinement”.

• SLAM = The first CEGAR project/tool.
– Developed at MSR

• Lazy Abstraction = CEGAR optimization
– Used in the BLAST tool from Berkeley.

48



What is Counterexample Guided 
Abstraction Refinement (CEGAR)?

Verification by …

Model Checking?

Theorem Proving?

Dataflow Analysis or Program Analysis?

49



Verification

50

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5: unlock();

return;
}

Is this program correct?

What does correct mean?

How do we determine if a 
program is correct?



Verification by Model Checking

51

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5: unlock();

return;
}

1. (Finite State) Program
2. State Transition Graph
3. Reachability

- Program"Finite state model
- State explosion
+ State exploration
+ Counterexamples

Precise [SPIN,SMV,Bandera,JPF]



Verification by Theorem Proving

52

1. Loop Invariants
2. Logical Formulas
3. Check Validity 

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5: unlock();

return;
}

Invariant: 
¬lock Æ new = old

Ç
¬lock Æ new ¹ old



Verification by Theorem Proving

53

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5: unlock();

return;
}

1. Loop Invariants
2. Logical Formulas
3. Check Validity 

- Loop invariants
- Multithreaded programs
+ Behaviors encoded in logic
+ Decision procedures

Precise [ESC, PCC]



Verification by Program Analysis
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Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5: unlock();

return;
}

1. Dataflow Facts
2. Constraint System
3. Solve Constraints

- Imprecision: fixed facts
+ Abstraction
+ Type/Flow analyses

Scalable [Cqual, ESP]



Combining Strengths

55

Theorem Proving
- Need loop invariants
(will find automatically)
+ Behaviors encoded in logic
(used to refine abstraction)
+ Theorem provers
(used to compute successors, 
refine abstraction)

Program Analysis
- Imprecise
(will be precise)
+ Abstraction
(will shrink the state 
space we must explore)

Model Checking

- Finite-state model, state explosion
(will find small good model)
+ State space exploration
(used to get a path sensitive analysis)
+ Counterexamples
(used to find relevant facts, refine abstraction)

SLAM



Software Model Checking 
via Counterexample Guided 

Abstraction Refinement 

There are easily dozens of papers.

We will skim.



SLAM Overview

• Input: Program and Specification
– Standard C Program (pointers, procedures)
– Specification = Partial Correctness

• Given as a finite state machine (typestate)
• “I use locks correctly”, not “I am a webserver”

• Output: Verified or Counterexample
– Verified = program does not violate spec

• Can come with proof!
– Counterexample = concrete bug instance

• A path through the program that violates the spec
59



Take-Home Message

• SLAM is a software model checker. It 
abstracts C programs to boolean
programs and model-checks the boolean
programs.

• No errors in the boolean program implies 
no errors in the original.

• An error in the boolean program may be 
a real bug. Or SLAM may refine the 
abstraction and start again. 

60



Property 1: Double Locking

61

“An attempt to re-acquire an acquired lock or 
release a released lock will cause a deadlock.” 

Calls to lock and unlock must alternate.

lock

lock
unlock

unlock



Property 2: Drop Root Privilege

62

“User applications must not run with root 
privilege” 
When execv is called, must have suid ¹ 0

[Chen-Wagner-Dean ’02]



Property 3 : IRP Handler

63
[Fahndrich]

MPR3

CallDriver
MPR

completion

synch

not pending returned

SKIP2

IPCCallDriver
Skip return

child status

DC

Complete
request return

not Pend

PPC
prop

completion
CallDriver

N/A

no prop
completion CallDriver

start NP

return
Pending

NP

MPR1

MPR
completion

SKIP2

IPCCallDriver

CallDriver

DC

Complete
request

PPC
prop

completion
CallDriver

N/A

no prop
completion CallDriver

start P Mark Pending

IRP accessible N/A

synch

SKIP1
CallDriver

SKIP1
Skip

MPR2 MPR1

NP

MPR3

CallDrivernot pending returned

MPR2

synch



Example SLAM Input

64

lock

lock

unlock

unlock

Example ( ) {
1: do{

lock();
old = new;

q = q->next;
2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5: unlock();

return;
}



SLAM in a Nutshell

SLAM(Program p, Spec s) =
Program q = incorporate_spec(p,s); // slic
PredicateSet abs = { }; 
while true do
BooleanProgram b = abstract(q,abs); // c2bp
match model_check(b) with // bebop
| No_Error " print(“no bug”); exit(0)
| Counterexample(c) "

if is_valid_path(c, p) then // newton
print(“real bug”); exit(1)

else
abs # abs $ new_preds(c) // newton

done
65



Incorporating Specs

66#66

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5: unlock();

return;
}

0 1
lock

lock

unlock

ERR
unlock

Ideas?



Incorporating Specs

67#67

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5: unlock();

return;
}

0 1
lock

lock

unlock

ERR
unlock

Example ( ) {
1: do{

if L=1 goto ERR;
else L=1; 
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

if L=0 goto ERR;
else L=0;
new ++;

}
4: } while(new != old);
5: if L=0 goto ERR;

else L=0; 
return;

ERR: abort(); 
}   

Original program 
violates spec iff

new program 
reaches ERR



Program As Labeled Transition System

68

State
Transition

3: unlock();
new++;

4:} …

pc
lock
old

new

q

! 3

!

! 5

! 5

! 0x133a

pc
lock
old

new

q

! 4

!

! 5

! 6

! 0x133a

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:    if (q != NULL){
3: q->data = new;

unlock();
new ++;

}
4: } while(new != old);
5: unlock();

return;
}



The Safety Verification Problem

69

Initia
l

Error
(e.g., states with
PC = Err)

Is there a path from an initial to an error state ?
Problem? Infinite state graph (old=1, old=2, old=…)

Solution? Set of states % logical formula

Safe States
(never reach 
Error)

Infinite state graph (old=1, old=2, old=…)

Set of states % logical formula



Representing
[Sets of States] as Formulas

70

[F]
states satisfying F  {s | s ² F }

F
FO formula over program vars

[F1] ! [F2] F1 Æ F2

[F1] " [F2]

[F]

[F1] # [F2]
i.e. F1Æ¬ F2  unsatisfiable



Idea 1: Predicate Abstraction

72

• Predicates on program state:
lock (i.e., lock=true)
old = new

• States satisfying same
predicates are equivalent
• Merged into one abstract state

• Num of abstract states is finite
• Thus model-checking the 

abstraction will be feasible!

Why?



Abstract States and Transitions

73

lock 
old=new

¬ lock 
¬ old=new

Theorem Prover

State
Transition

3: unlock();
new++;

4:} …

pc
lock
old

new

q

! 3

!

! 5

! 5

! 0x133a

pc
lock
old

new

q

! 4

!

! 5

! 6

! 0x133a



Abstraction

74

A1 A2

lock 
old=new

¬ lock 
¬ old=new

Theorem Prover

State
Transitionc1

3: unlock();
new++;

4:} …

pc
lock
old

new

q

! 3

!

! 5

! 5

! 0x133a

c2

pc
lock
old

new

q

! 4

!

! 5

! 6

! 0x133a

Existential Lifting 
(i.e., A1"A2 iff #c1$A1. #c2$A2. c1"c2)



Abstraction
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lock 
old=new

¬ lock 
¬ old=new

Theorem Prover

State
Transition

3: unlock();
new++;

4:} …

pc
lock
old

new

q

! 3

!

! 5

! 5

! 0x133a

pc
lock
old

new

q

! 4

!

! 5

! 6

! 0x133a



Analyze Abstraction

76

Analyze finite graph 
Over Approximate 
Safe $ System Safe
No false negatives

Problem
Spurious 

counterexamplesfalse positives



Idea 2: Counterexample-Guided Refinement

77

Solution
Use spurious 

counterexamples
to refine abstraction!



Idea 2: Counterexample-Guided Refinement

78

1. Add predicates to 
distinguish states across cut

2. Build refined abstraction

Solution
Use spurious 

counterexamples
to refine abstraction!

Imprecision due to merge



Iterative Abstraction-Refinement

79

[Kurshan et al 93] [Clarke et al 00]
[Ball-Rajamani 01]

1. Add predicates to 
distinguish states across cut

2. Build refined abstraction
• eliminates counterexample

3. Repeat search
until real counterexample   
or system proved safe

Solution
Use spurious 

counterexamples
to refine abstraction!



Problem: Abstraction is Expensive

80

Reachable

Problem
#abstract states = 2#predicates

Exponential Thm. Prover queries

Observe
Fraction of state space reachable
#Preds ~ 100’s, #States ~ 2100 ,
#Reach ~ 1000’s 

Why?



Solution1: Only Abstract Reachable States

81

Safe

Solution
Build abstraction during 
search

Problem
#abstract states = 2#predicates

Exponential Thm. Prover queries



Solution2: Don’t Refine Error-Free Regions

82

Solution
Don’t refine error-free 
regions

Problem
#abstract states = 2#predicates

Exponential Thm. Prover queries

Error 
Free
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Key Idea for Solutions?

84



Key Idea: Reachability Tree

85

5

1

2

3

4

3

Unroll Abstraction
1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates
- Rebuild subtree with new preds.

Initial



Key Idea: Reachability Tree

86

3

1

2

3

4 5

3

7

6

Error Free

Unroll Abstraction
1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates
- Rebuild subtree with new preds.

Initial



Key Idea: Reachability Tree
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3

1

2

3

4 5

3

6

Error Free

7

1

8

8 1

SAF
E

Unroll Abstraction
1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates
- Rebuild subtree with new preds.

S1: Only Abstract Reachable States
S2: Don’t refine error-free regions

Initial



88
Predicates: LOCK

¬ LOCK

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}

1

1
Reachability Tree

Build-and-Search



Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}
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¬ LOCK1

1

lock()
old = new
q=q->next LOCK2

2

Reachability Tree

Build-and-Search

Predicates: LOCK



Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}
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¬ LOCK1

1

LOCK2

2

LOCK

[q!=NULL]

3

3

Reachability Tree

Build-and-Search

Predicates: LOCK



Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}
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¬ LOCK1

1

LOCK2

2

LOCK3

3

q->data = new
unlock()
new++ 4

4

¬ LOCK

Reachability Tree

Build-and-Search

Predicates: LOCK



Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}
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¬ LOCK1

1

LOCK2

2

LOCK3

3

4

4

¬ LOCK

¬ LOCK
[new==old]

5
5

Reachability Tree

Build-and-Search

Predicates: LOCK



Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}
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¬ LOCK1

1

LOCK2

2

LOCK3

3

4

4

¬ LOCK

¬ LOCK5
5

unlock()

¬ LOCK

Reachability Tree

Build-and-Search

Predicates: LOCK
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¬ LOCK1

1

LOCK2

2

LOCK3

3

4

4

¬ LOCK

¬ LOCK5
5

¬ LOCK

Reachability Tree

lock()
old = new
q=q->next

[q!=NULL]

q->data = new
unlock()
new++

[new==old]

unlock()

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}

Analyze Counterexample

Predicates: LOCK
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¬ LOCK1

1

LOCK2

2

LOCK3

3

4

4

¬ LOCK

¬ LOCK5
5

¬ LOCK

[new==old]

new++

old = new

Inconsistent
new == old

Reachability Tree

Analyze Counterexample

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}

Predicates: LOCK
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¬ LOCK1

1
Reachability Tree

Repeat Build-and-Search

Predicates: LOCK, new == old

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}



Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}
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¬ LOCK1

1

LOCK , new==old 2

2

lock()
old = new
q=q->next

Reachability Tree

Repeat Build-and-Search

Predicates: LOCK, new == old



Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}
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¬ LOCK1

1

LOCK , new==old 2

2

LOCK , new==old 3

3

4

4

q->data = new
unlock()
new++¬ LOCK  , ¬ new = old

Reachability Tree

Repeat Build-and-Search

Predicates: LOCK, new == old



Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}
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¬ LOCK1

1

LOCK , new==old 2

2

LOCK , new==old 3

3

4

4

¬ LOCK , ¬ new = old

[new==old]

Reachability Tree

Repeat Build-and-Search

Predicates: LOCK, new == old



Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}
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¬ LOCK1

1

LOCK , new==old 2

2

LOCK , new==old 3

3

4

4

¬ LOCK , ¬ new = old

¬ LOCK,  
¬ new == old

1

[new!=old]

4

Reachability Tree

Repeat Build-and-Search

Predicates: LOCK, new == old
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¬ LOCK1

1

2

2

3

3

4

4

1

4

LOCK , new=old4

4

¬ LOCK , new==old

5
5

SAFE

Reachability Tree

LOCK , new==old

LOCK , new==old

¬ LOCK , ¬ new = old

¬ LOCK,  
¬ new == old

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}

Repeat Build-and-Search

Predicates: LOCK, new == old



Key Idea: Reachability Tree
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3

1

2

3

4 5

3

6

Error Free

7

1

8

8 1

SAF
E

Unroll Abstraction
1. Pick tree-node (=abs. state)
2. Add children (=abs. successors)
3. On re-visiting abs. state, cut-off

Find min infeasible suffix
- Learn new predicates
- Rebuild subtree with new preds.

S1: Only Abstract Reachable States
S2: Don’t refine error-free regions

Initial
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¬ LOCK1

1

2

2

3

3

4

4

1

4

LOCK , new=old4

4

¬ LOCK , new==old

5
5

SAFE

Reachability Tree

LOCK , new==old

LOCK , new==old

¬ LOCK , ¬ new = old

¬ LOCK,  
¬ new == old

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}

Two Handwaves

Predicates: LOCK, new == old

3

4

LOCK , new==old

¬ LOCK , ¬ new = old

q->data = new
unlock()
new++

Q. How to compute “successors” ?

Q. How to find predicates ?

Predicates: LOCK, new==old 

Refinement
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¬ LOCK1

1

2

2

3

3

4

4

1

4

LOCK , new=old4

4

¬ LOCK , new==old

5
5

SAFE

Reachability Tree

LOCK , new==old

LOCK , new==old

¬ LOCK , ¬ new = old

¬ LOCK,  
¬ new == old

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}

Two Handwaves

Predicates: LOCK, new == old

3

4

LOCK , new==old

¬ LOCK , ¬ new = old

q->data = new
unlock()
new++

Q. How to compute “successors” ?



Weakest Preconditions
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[P]

OP

[WP(P, OP)]WP(P,OP)
Weakest formula P’ s.t. 

if P’ is true before OP
then P is true after OP



Weakest Preconditions
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[P]

OP

[WP(P, OP)]WP(P,OP)
Weakest formula P’ s.t. 

if P’ is true before OP
then P is true after OP

Assign
x = e

P

P[e/x]

new = old

new = new+1

new+1 = old

More on this later in 
the semester!



How to compute successor?
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3

4

LOCK , new==old

¬ LOCK , ¬ new == old

OP

For each p
• Check if p is true (or false) after OP

Q: When is p true after OP ?
- If WP(p, OP) is true before OP !
- We know F is true before OP
- Thm. Pvr. Query:    F % WP(p, OP)

F 

? 

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}

Predicates: LOCK, new == old



How to compute successor?
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3

4

LOCK , new==old

OP

For each p
• Check if p is true (or false) after OP

Q: When is p false after OP ?
- If WP(¬p, OP) is true before OP !
- We know F is true before OP
- Thm. Pvr. Query:    F % WP(¬p, OP)

F 

? 

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}

Predicates: LOCK, new == old



How to compute successor?
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3

4

LOCK , new==old

OP

For each p
• Check if p is true (or false) after OP

Q: When is p false after OP ?
- If WP(¬p, OP) is true before OP !
- We know F is true before OP
- Thm. Pvr. Query:    F % WP(¬p, OP)

F 

? 

Example ( ) {
1: do{

lock();
old = new;
q = q->next;

2:   if (q != NULL){
3:     q->data = new;

unlock();
new ++;

}
4:}while(new != old);
5:unlock();
}

Predicate: new == old

(LOCK , new==old)  % (new + 1 = old) 

(LOCK , new==old)  % (new + 1 ¹ old) 

NO

YES

True?

False?

¬ new == old¬LOCK ,



Advanced SLAM/BLAST

Too Many Predicates
- Use Predicates Locally

Counter-Examples
- Craig Interpolants

Procedures
- Summaries

Concurrency
- Thread-Context Reasoning

110



SLAM Summary

1) Instrument Program With Safety Policy
2) Predicates = { } 
3) Abstract Program With Predicates

– Use Weakest Preconditions and Theorem Prover Calls
4) Model-Check Resulting Boolean Program

– Use Symbolic Model Checking
5) Error State Not Reachable?

– Original Program Has No Errors: Done!
6) Check Counterexample Feasibility

• Use Symbolic Execution
7) Counterexample Is Feasible?

– Real Bug: Done!
8) Counterexample Is Not Feasible?

1) Find New Predicates (Refine Abstraction)
2) Goto Line 3 111



Bonus: SLAM/BLAST Weakness

112

1: F() {
2: int x=0;
3: lock();
4: x++;
5:  while (x ¹ 88);
6: if (x < 77)
7: lock(); 
8: } 

• Preds = {}, Path = 234567
• [x=0, ¬x+1¹88, x+1<77]
• Preds = {x=0}, Path = 234567
• [x=0, ¬x+1¹88, x+1<77]
• Preds = {x=0, x+1=88}
• Path = 23454567
• [x=0, ¬x+2¹88, x+2<77]
• Preds = {x=0,x+1=88,x+2=88} 
• Path = 2345454567
• …
• Result: the predicates 

“count” the loop iterations


