
CSCI 5535 Fundamentals of Programming 
Languages 

Potential Course Projects

CU Programming Languages  
& Verification

1



1. Formalize the core features of Rust language, including 
its type and borrow checker.


2. Prove Type and Borrow Safety theorem.


3. Extend it to concurrency and prove the absence of data 
races.


4. Reference: Pearce, A Lightweight Formalism for 
Reference Lifetimes and Borrowing in Rust, TOPLAS’21.

2

Project 1: Rust Core Calculus 



1. Embed “Liquid Types” (Rondon et al, PLDI’08) in Coq.


2. Demonstrate deep and shallow embeddings.


3. Write LTac-based proof automation scripts that automate 
(most of) liquid type checking.


4. Bonus: extend the type system to handle “structural 
relations” (Kaki et al, ICFP’14).

3

Project 2: Liquid Types



1. Formalize models of well-known distributed protocols in 
Coq:


1. One-shot leader election,


2. Leader election in a ring, and


3. Paxos.


2. In each case, verify that the safety property:


1. Leader, if any, is unique.


2. No two nodes make different decisions.


3. Write LTac-based proof automation scripts that partially 
automate verification. 

4

Project 3: Distributed Protocol Verification



1. Formalize lightweight C language (with variables, 
pointers, assignments, While loop, and function calls) in 
Coq. Define its operational semantics.


2. Formalize an equivalent subset of JVM instructions and 
define its operational semantics. 


3. Write a “compiler” from C-lite to JVM. Prove its 
correctness by showing the observational equivalence 
(bi-simulation) of source (C-lite) and target (JVM) 
programs.

5

Project 4: C-lite to JVM Byte Code



6

More Projects

1. Formalize PageRank algorithm in Coq and prove its 
convergence.


2. Implement Software Foundations Vol1 in Lean.


