
CSCI 5535 Fundamentals of Programming
Languages

Aka How not to fear proofs!

Lec 1: Introduction

CU Programming Languages  
& Verification

1

About me

Gowtham Kaki

• Assistant Professor, Dept. of Computer Science

• Research: Programming Languages and Formal Methods. Applications in
Distributed Systems, Cryptography, and Security.

• In my free time:

• I read: History, Biographies, Pop-science, Detective Fiction, …

• I hike: Davidson Mesa & Coal Creek Trail

• I play: silly games with my 2-y-o daughter.

2

g-OW-thum

1. Learn to make precise statements and prove them.

2. Learn to use this skill to study mathematical

foundations of computer programming.

3

About CSCI 5535 / ECEN 5533

4

Haven’t we always been making precise statements in math?

“There do not exist four positive integers, the last being greater

than two, such that the sum of the first two, each raised to the

power of the fourth, equals the third raised to that same power.”

There do not exist positive integers and , with ,

such that

x, y, z, n n > 2
xn + yn = zn

Vs

/∃(x ∈ ℕ, y ∈ ℕ, z ∈ ℕ, n ∈ ℕ) . n > 2 ∧ xn + yn = zn

Vs

5

Haven’t we always been writing proofs in math?

• Informal arguments

• Hard to check

• Incomprehensible

• Error-prone

“Anecdotal evidence suggests that as many as a third of all papers

published in mathematical journals contain mistakes—not just minor errors,

but incorrect theorems and proofs” — Lamport, How to Write a Proof, 1993.

What’s wrong with this?

Proofs ~ Programs

Writing a proof in English ~ Writing a program in English

6

What is code for math?

Code is/has:
• Precise semantics

• Executable by a machine

• Understandable by a human

• Composable

• Fails if incorrect

• Means the same everywhere*

Formal Mathematics has all these qualities!

“Formal mathematics is nature's way of letting you know how sloppy 
your mathematics is.” — Lamport, Specifying Systems, 2002.

7

Formal Mathematics

8

A B C D E F G H

8

7

6

5

4

3

2

1

A B C D E F G H
8

7

6

5

4

3

2

1

Formal proof: an analogy

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

♞

⇓ NamePremise P1

⟨P1 : CR(A,8)⟩ ⊢ CR(F,4)
⇓ Invert CR(F,4)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5) ∨ CR(E,6) ∨ CR(G,6) ∨ CR(H,5)

∨ CR(H3) ∨ CR(G2) ∨ CR(E,2) ∨ CR(D3)
⇓ PickDisjunct CR(D,5)

⟨P1 : CR(A,8)⟩ ⊢ CR(D,5)
⇓ Invert CR(D,5)

⟨P1 : CR(A,8)⟩ ⊢ CR(C,7) ∨ CR(B,6) ∨ …

⇓ PickDisjunct CR(C,7)

⟨P1 : CR(A,8)⟩ ⊢ CR(C,7)

⟨P1 : CR(A,8)⟩ ⊢ CR(A,8) ∨ CR(A,6) ∨ CR(E.8) ∨ CR(E,6)

⇓ Invert CR(C,7)

⇒ PickDisjunct CR(A,8) ⟨P1 : CR(A,8)⟩ ⊢ CR(A,8)

⇑ ApplyPremise P1

true

×
× ×

×

×
××

×

×

×
×

9

A B C D E F G H

8

7

6

5

4

3

2

1

A B C D E F G H
8

7

6

5

4

3

2

1

Definition: : Knight CanReach the square CR(i, j) ⟨i, j⟩
Theorem: CR(A,8) ⇒ CR(F,4)

⇓ NamePremise P1
⇓ Invert CR(F,4)
⇓ PickDisjunct CR(D,5)
⇓ Invert CR(D,5)
⇓ PickDisjunct CR(C,7)

⇓ Invert CR(C,7)
⇒ PickDisjunct CR(A,8)

⇑ ApplyPremise P1

A machine-checkable proof script!♞

We will apply the same idea to write formal proofs of mathematical statements.

Formal proof: an analogy

10

Formal proofs in the wild

• Four color theorem — Appel and Haken, 1976.

• Kepler’s Conjecture — Hales, 2015.

• Polynomial Freiman-Ruzsa (PFR) conjecture over — Terrance Tao, 2023.𝔽2

Prof at UCLA, Fields Medalist,  
Considered greatest living mathematician

1. Learn to make precise statements and prove them.

2. Learn to use this skill to study mathematical

foundations of computer programming.

11

About CSCI 5535 / ECEN 5533

12

Recall High-School Algebra …

3x + 2y − 1 = 0

−2x + 3y − 2 = 0

• Consider the equations:

• Different but not fundamentally different.

• Different instantiations of ax + by + c = 0

13

• Now consider the equations:

• Fundamentally different equations.

• One is quadratic, other is linear.

y = 3x2 + 2x − 1

y = 2x − 1

• is more expressive /
powerful than

y = ax2 + bx + c
ax + by + c = 0

Recall High-School Algebra …

14

Are computer programs analogous to algebraic functions?

≅
?

C Java

Q. Is there a mathematics to answer such questions decisively?

A. Yes!

About CSCI 5535 / ECEN 5533

Mathematical foundations of computer programs and
programming languages.

15

• To understand fundamental differences among various programming styles and languages.

• To learn various ways in which one can ascribe a meaning to a program.

• To ask precise questions about computer programs and to decisively answer them.

• E.g: “Does this program stably sort a list of numbers?”, “Does this program ever
terminate?” etc.

“Program Verification”

Prove that a program satisfies a property P φ

16

Why verify programs?

Because building reliable software is hard.

Therac 25 Mars Climate Orbiter Boeing 737 Max 8

“Program testing can be used to show the presence of bugs, but never to show their
absence!” - E W Dijkstra

17

Does Program Verification Scale?

[Slide courtesy: B C Pierce]

18

Does Program Verification Pay?

19

Coq

• A mechanized proof assistant.

• Checks if the proof you write indeed proves the theorem you state.

• We make extensive use of Coq in this class.

• Installing Coq (version 8.12 or later):

• From https://coq.inria.fr: You can download a Coq platform binary that includes a dedicated IDE
for Coq called Coqide.

• From https://proofgeneral.github.io: Installs a Coq major mode for Emacs. Best option if you are
already familiar with Emacs.

• Via Opam — the package manager of OCaml. See https://coq.inria.fr/opam-using.html for
instructions. You can combine this with vscoq plugin for vscode: https://github.com/coq-
community/vscoq.

Thierry Coquand
Invented Calculus of Inductive  

Constructions — theoretical basis for Coq

https://coq.inria.fr
https://proofgeneral.github.io/:
https://coq.inria.fr/opam-using.html
https://github.com/coq-community/vscoq
https://github.com/coq-community/vscoq

Evaluation Components

Item Count Cumulative Weight

Homeworks 6 48%

Course Project 1 25%

Mid-term 1 10%

Final 1 15%

Class Participation - 2%

20

• Coq Assignments: Write proofs in Coq for select exercises.

• 6 Homeworks: ~Once every two weeks. Submitted via Canvas. Link will be posted.

• Feel free to collaborate, but please don’t plagiarize!

Evaluation Components

21

• Anything related to formal verification. You chose the problem statement!

• Example 1: Formalize a model of a real-world system, and prove interesting properties.

• Eg: Border Gateway Protocol (BGP) guarantees absence of routing loops.

• Example 2: Formally prove a landmark result from STOC/FOCS/LICS.

• Eg: PCP theorem.

• Can be done alone or in groups of two. Expectations are scaled accordingly.

Item Count Cumulative Weight

Homeworks 6 48%

Course Project 1 25%

Mid-term 1 10%

Final 1 15%

Class Participation - 2%

Evaluation Components

22

• Written exams.

• Mid-term will be in the class. Sometime in October. Date TBD.

• Final in December. Date and place determined by the registrar.

• Doing homework assignments and textbook exercises is a good practice for exams.

Item Count Cumulative Weight

Homeworks 6 48%

Course Project 1 25%

Mid-term 1 10%

Final 1 15%

Class Participation - 2%

23

TODO for you

• Checkout course website: https://csci5535.github.io

• Install Coq (v8.12 or later) and Lean4.

• Register on course Piazza (link on course website).

• Read Preface and Basics chapters from textbook Vol 1 (Logical Foundations)

• Download and run (step through) Basics.v file in your chosen Coq IDE.

https://csci5535.github.io

