CSCI 5535 Fundamentals of Programming

Languages
Aka How not to fear proofs!

Lec 1: Introduction

CU Programming Languages
& Verification

1

About me

* Assistant Professor, Dept. of Computer Science

* Research: Programming Languages and Formal Methods. Applications Iin
Distributed Systems, Cryptography, and Security.

* |[n my free time;
* | read: History, Biographies, Pop-science, Detective Fiction, ...

* | hike: Davidson Mesa & Coal Creek Tralil
e | play: silly games with my 2-y-o daughter.

it

About CSCI 5535 / ECEN 5533

1. Learn to make precise statements and prove them.

2. Learn to use this skill to study mathematical
foundations of computer programming.

Haven’t we always been making precise statements in math?

“There do not exist four positive integers, the last being greater
than two, such that the sum of the first two, each raised to the
power of the fourth, equals the third raised to that same power.”

Vs

There do not exist positive integers x, vy, z, and n, with n > 2,
such that x" + y" = 7"

Vs

AxeN,yeN,zeN,neN).n>2Ax"+y'=7"

Haven’t we always been writing proofs in math??

Theorem 2.30 (Sound). If cvery branch of a semantic argument proof of
I~ F closes, then F is valid.

Completeness is more complicated. We want to show that there exists a
closed semantic argument proof of 7 [~ I” when I9 is valid. Our strategy is as
follows. We defline a procedure for applying the proof rules. When applving
the quantification rules, the procedure scleets values from a predetermined
countably infinite domain. We then show that when some falsifying interpre-
tation I cxists (such that I [~ F') our procedurc constructs, at the limit, a
[alsifying interpretation. Therelore, F' must be valid if the procedures actu-
ally discovers an argument in which all branches are closed. We now proceed
according to this proof plan.

[.et 1D be a countably infinite domain of values vy,vs,v3,... which we
can cnumerate in some fixed order. Start the semantic argument by placing
I f= F at the root and marking it as unused. Now assume that the procedure
has constructed a partial semantic argument and that cach line is marked as
either used or unused. We deseribe the next iteration.

Sclect the carliest line L : I |= G or L : I [@ in the argument that
is marked unused, and choose the appropriate proof rule to apply according
to the root symbol of G’s parsc tree. To apply a rule, add the appropriate
deductions at the end of every open branch that passes through line L; mark
each new deduction as unused; and mark L as used. The application of the
negation rules and the first conjunction rule is then straightforward. Applying
the sccond (branching) conjunction rule introduces a fork at the end of every
open branch, doubling the number of open branches. In applying the second
quantification rule, choose the next domain clement v; that does not appear
in the semantic argument so far. For the first quantification rule, assume that
& has the form Vz. H. Choose the first value v; on which Y. H has not been
instantiated in any ancestor of L. Additionally, consider I = G as a second
“deduction” of this rule (so that both / <{zx — v;} F H and I G are
added to every branch passing through L and marked as unused). This trick
guarantees that x of Yx. H is instantiated on every domain element without
preventing the rest of the proof from progressing. Finally, close any branch
that has a contradiction resulting from a deduction in this iteration.

What’s wrong with this?
* |Informal arguments
 Hard to check
* Incomprehensible

* Error-prone

“Anecdotal evidence suggests that as many as a third of all papers
published in mathematical journals contain mistakes—not just minor errors,
but incorrect theorems and proofs” — Lamport, How to Write a Proof, 1993.

Proofs ~ Programs

Writing a proof in English ~ Writing a program in English

What is code for math?

Code is/has:

“Talk is -
cheap. Show '
me the code.” .

Precise semantics
Executable by a machine
Understandable by a human
Composable

Fails if incorrect

Means the same everywhere*

Linus Torvalds -

Formal Mathematics has all these qualities!

“Formal mathematics is nature's way of letting you know how sloppy
your mathematics is.” — Lamport, Specifying Systems, 2002.

0

Formal Mathematics

Formalism (philosophy of mathematics) % 18 languages

Article Talk Read Edit View history Tools wv

From Wikipedia, the free encyclopedia

In the philosophy of mathematics, formalism is the view that holds that statements of mathematics and logic can be considered
to be statements about the consequences of the manipulation of strings (alphanumeric sequences of symbols, usually as
equations) using established manipulation rules. A central idea of formalism "is that mathematics is not a body of propositions
representing an abstract sector of reality, but is much more akin to a game, bringing with it no more commitment to an ontology
of abjects or properties than ludo or chess."'! According to formalism, the truths expressed in logic and mathematics are not
about numbers, sets, or triangles or any other coextensive subject matter — in fact, they aren't "about" anything at all. Rather,
mathematical statements are syntactic forms whose shapes and locations have no meaning unless they are given an
interpretation (or semantics). In contrast to mathematical realism, logicism, or intuitionism, formalism's contours are less defined
due to broad approaches that can be categorized as formalist.

N O ~ OO0 O N O

Formal proof: an analogy

Theorem: CR(A,8) = CR(F,4)
U NamePremise P,
(P,: CRA8)) + CR(FA4
U Invert CR(F4)

U PickDisjunct CR(D,5)
(P, : CR(A8)) + CR(D,5)
| Invert CR(D,5)

N W ~ OO0 O N O

(P, : CR(A,8)) = CR(C/7) vV CR(B,6) V ...
U PickDisjunct CR(C,7)
(P, : CR(A,8)) + CR(C,7)
J Invert CR(C,7)
(P, : CR(A8)) + CR(A,8) V CR(A,6) V CR(ES8) vV CR(E,6) = PickDisjunct CR(A,3)
8

Definition: CR(i, j): Knight CanReach the square (i, j)

(P, : CR(A8)) + CR(D,5) v CR(E,6) vV CR(G,6) v CR(H.5)
vV CR(H3) v CR(G2) v CR(E,2) v CR(D3)

[rue
A ApplyPremise P,
(P, : CR(A,8)) + CR(A,8)

N O ~ OO0 O N O

Formal proof: an analogy

Definition: CR(i, j): Knight CanReach the square (i, j)

Theorem: CR(A,8) = CR(F,4)

\

NamePremise P,
Invert CR(F,4)

PickDisjunct CR(D,S)
Invert CR(D,5)
PickDisjunct CR(C,7)

Invert CR(C,7)
PickDisjunct CR(A,3)

> A machine-checkable proof script!

N W ~ OO0 O N O

 ApplyPremise P, y

We will apply the same idea to write formal proofs of mathematical statements.

Formal proofs in the wild

* Four color theorem — Appel and Haken, 1976.

 Kepler’s Conjecture — Hales, 2015.

» Polynomial Freiman-Ruzsa (PFR) conjecture over [, — Terrance Tao, 2023.

H__J
Prof at UCLA, Fields Medalist,

Considered greatest living mathematician

Terence Tao

@taoc@mathstodon.xyz

As a consequence of my #Lean4 formalization project | have found a small (but non-trivial) bug in my paper! While

in the course of formalizing the arguments in page 6 of arxiv.org/pdf/2310.05328 pdf , | discovered that the expression
n—1

%log ——— that appears in those arguments actually diverges in the case n = 3,k = 2! Fortunately this is an issue
that is only present for small values of n, for which one can argue directly (with a worse constant), so | can fix the

argument by changing some of the numerical constants on this page (the arguments here still work fine for n > 8, and
the small n case can be handled by cruder methods).

Enclosed is the specific point where the formalization failed; Lean asked me to establish 0 < n — 3, but the hypothesis

| had was only that n > 2, and so the "linarith" tactic could not obtain a contradiction from the negation of
0<n-—3.

About CSCI 5535 / ECEN 5533

1. Learn to make precise statements and prove them.

2.| Learn to use this skill to study mathematical
foundations of computer programming.

11

Recall High-School Algebra ...

 Consider the equations:

3x+2y—1=0

f ~2+3y-2=0

* Different but not fundamentally different.

00+

» Different instantiations of ax + by + ¢ = (0

1.0 0.5 J.U 0.5

12

Recall High-School Algebra ...

* Now consider the equations:
y=3x+2x -1
y=2x—1

o T o » Fundamentally different equations.

* One is quadratic, other is linear.

e Y = ax’ + bx + ¢ is more expressive /

powerful than ax + by + ¢ = 0

13

Are computer programs analogous to algebraic functions?

o Java
(: import java.io.*:
public class Fib
{
public static void main(String args[]) throws I0Exception
{
FCn){ int n,fl,f2,f3;
return n<d?1:f(--mM)+fC--n): BufferedReader br =
1 4 < ()+F(E ? new BufferedReader(new InputStreamReader(System.in));
, ~ n = Integer.parselnt(br.readlLine());
main(a,b){ — f1=0;
for(scanf("%d" ,&b);a++<=b;printf("%d ",f(a))); f2=1;
} if(n>0)
{
for(int 1=0; i<n; i++)
{
Q. Is there a mathematics to answer such questions decisively? ?gs’;imé“t-"””ﬂ“(" L3
=tT1+tZ;
f1=f2;
A. Yes! F2F3:
¥
3
¥

h

14

About CSCI 5535 / ECEN 5533

Mathematical foundations of computer programs and
programming languages.

* To understand fundamental differences among various programming styles and languages.
* o learn various ways in which one can ascribe a meaning to a program.
* Jo ask precise questions about computer programs and to decisively answer them.

* E.g: “Does this program stably sort a list of numbers?”, “Does this program ever

terminate?” etc.

“Program Verification”

Prove that a program P satisfies a property ¢

15

Why verify programs?

Because building reliable software is hard.

Therac 25 Mars Climate Orbiter Boeing 737 Max 8

“Program testing can be used to show the presence of bugs, but never to show their
absence!” - E W Dijkstra

16

Does Program Verification Scale?

Use of formal methods to verify full-scale software systems is a hot research topic!

» CompCert — fully verified C compiler
Leroy, INRIA

» Vellvm — formalized LLVM IR
Zdancewic, Penn

* Ynot — verified DBMS, web services
Morrisett, Harvard

 Verified Software Toolchain
Appel, Princeton

» Bedrock — web programming, packet filters

Chlipala, MIT
o CertiKOS - certified OS kernel ch\/m
Shao & Ford, Yale verified

LLVM

17

[Slide courtesy: B C Pierce]

Does Program Verification Pay?

CERTIK

amagon
BAE SYSTEMS

facebook

18

Coag

* A mechanized proof assistant.

* Checks if the proof you write indeed proves the theorem you state. _
Thierry Coquand

* \We make extensive use of Coq in this class. Invented Calculus of Inductive

« Installing Coq (version 8.12 or later): Constructions — theoretical basis for Cog

 From https://coq.inria.fr: You can download a Coq platform binary that includes a dedicated IDE

for Coq called Coqide.

 From https://proofgeneral.github.io: Installs a Cog major mode for Emacs. Best option if you are

already familiar with Emacs.

* Via Opam — the package manager of OCaml. See https://coq.inria.fr/opam-using.html for

instructions. You can combine this with vscoq plugin for vscode: https://github.com/coa-

community/vscoaq.

19

https://coq.inria.fr
https://proofgeneral.github.io/:
https://coq.inria.fr/opam-using.html
https://github.com/coq-community/vscoq
https://github.com/coq-community/vscoq

Evaluation Components

ltem Count Cumulative Weight

Homeworks

Course Project 1 25%
Mid-term 1 10%
Final 1 15%

Class Participation - 2%

 Cog Assignments: Write proofs in Coq for select exercises.
* 6 Homeworks: ~Once every two weeks. Submitted via Canvas. Link will be posted.

* Feel free to collaborate, but please don’t plagiarize!

20

Evaluation Components

Count Cumulative Weight

Homeworks 9 48%

Course Project 1 25%

Mid-term 1 10%
Final 1 15%
Class Participation - 2%

Anything related to formal verification. You chose the problem statement!
Example 1: Formalize a model of a real-world system, and prove interesting properties.
 Eg: Border Gateway Protocol (BGP) guarantees absence of routing loops.
Example 2: Formally prove a landmark result from STOC/FOCS/LICS.
« Eg: PCP theorem.

Can be done alone or in groups of two. Expectations are scaled accordingly.
21

Evaluation Components

Count Cumulative Weight
Homeworks 6 48%
Course Project 1 25%
Mid-term 1 10%
Class Participation - 2%

Written exams.
Mid-term will be in the class. Sometime in October. Date TBD.
Final in December. Date and place determined by the registrar.

Doing homework assignments and textbook exercises is a good practice for exams.

22

TODO for you

Checkout course website: https://csci5535.github.io

Install Coq (v8.12 or later) and Lean4.
Register on course Piazza (link on course website).
Read Preface and Basics chapters from textbook Vol 1 (Logical Foundations)

Download and run (step through) Basics.v file in your chosen Coq IDE.

23

https://csci5535.github.io

