
CSCI 5535: Homework Assignment 0: Preliminaries

Spring 2020: Due Friday, January 24, 2020 Saturday, January 25, 2020

The purpose of this assignment is to refresh preliminaries from prior courses. It is all right if
you find this assignment difficult. Start early and ask for help if you get stuck! In particular, you
are encouraged to ask questions in class, on the discussion forum, or in office hours (though do
not post your solutions directly). You are also welcome to talk about these questions in larger
groups. However, be sure to acknowledge those with which you discussed.

Recall the evaluation guideline from the course syllabus.

Both your ideas and also the clarity with which they are expressed matter—both in
your English prose and your code!

We will consider the following criteria in our grading:

• How well does your submission answer the questions? For example, a common
mistake is to give an example when a question asks for an explanation. An
example may be useful in your explanation, but it should not take the place of
the explanation.

• How clear is your submission? If we cannot understand what you are trying
to say, then we cannot give you points for it. Try reading your answer aloud
to yourself or a friend; this technique is often a great way to identify holes in
your reasoning. For code, not every program that "works" deserves full credit.
We must be able to read and understand your intent. Make sure you state any
preconditions or invariants for your functions.

Submission Instructions. Upload to the moodle exactly one file named as follows:

• hw0-YourIdentiKey.pdf with your answers to the written questions. Typesetting is pre-
ferred but scanned, clearly legible handwritten write-ups are acceptable. Please no other
formats—no .doc or .docx. You may use whatever tool you wish (e.g., LATEX, Word, mark-
down, plain text, pencil+paper) as long as it is legibly converted into a pdf.

Replace YourIdentiKey with your IdentiKey (e.g., for me, I would submit hw0-bec.pdf). Don’t
use your student identification number. To help with managing the submissions, we ask that
you rename your uploaded files in this manner and use a single, consistent file format.

1. Feedback. Complete the survey on the linked from the moodle after completing this as-
signment. Any non-empty answer will receive full credit.

1

2. Course Mechanics. The purpose of this question is to ensure that you get familiar with this
course’s collaboration policy.

As in any class, you are responsible for following our collaboration policy; violations will be
handled according to university policy.

Our course’s collaboration policy is in the course syllabus site. Read it; then, for each of
the following situations, decide whether or not the students’ actions are permitted by the
policy. Explain your answers.

(a) Dolores and Toby are discussing Problem 3 by IM. Meanwhile, Toby is writing up his
solution to that problem.

(b) Amy, Jeff, and Chris split a pizza while talking about their homework, and by the end of
lunch, their pizza box is covered with notes and solutions. Chris throws out the pizza
box and the three go to class.

(c) Ian and Jeremy write out a solution to Problem 4 on a whiteboard in CSEL. Then, they
erase the whiteboard and run to the lobby. Sitting at separate tables, each student
types up the solution on his laptop.

(d) Nitin and Margaret are working on this homework over lunch; they write out a solution
to Problem 2 on a napkin. After lunch, Nitin pockets the napkin, heads home, and
writes up his solution.

3. Set Theory Preliminaries. Let X and Y be sets. Let℘(X) denote the powerset of X (i.e., the
set of all subsets of X). There is a 1-1 correspondence (i.e., a bijection) between the sets A
and B where

A
def= X →℘(Y) and B

def=℘(X ×Y) .

Note that A is a set of functions and B is a (or can be viewed as a) set of relations. This
correspondence will allow us to use functional notation for certain sets in class.

Demonstrate the correspondence between A and B by presenting an appropriate function
and proving that it is a bijection. Hint: you might construct a function f : B → A and prove
that f is an injection and a surjection.

This exercise is Exercise 1.4 from page 8 of Winskel’s book.

4. Induction Fallacy. Find the flaw in the following inductive proof that “All flowers smell the
same.” Please indicate exactly which sentences are wrong in the proof. Giving a counterex-
ample does not constitute an acceptable solution.

Proof. Let F be the set of all flowers, and let smells(f) be the smell of the flower f ∈ F (the
range of smells is not so important, but we will assume that it admits equality). We will also
assume that F is countable. Let the property P (n) mean that all subsets of F of size at most
n contain flowers that smell the same.

P (n)
def= ∀X ∈℘(F). |X | ≤ n =⇒ (∀ f , f ′ ∈ X . smells(f) = smells(f ′))

The notation |X | denotes the number of elements of X .

One way to formulate the statement to prove is ∀n ≥ 1.P (n). We will prove this by induction
on n, as follows:

2

Case (Base Case: n = 1). Obviously all singleton sets of flowers contain flowers that smell
the same (by the definition of P (n)).

Case (Induction Step). Let n be arbitrary, and assume that all subsets of F of size at most n
contain flowers that smell the same. We will prove that the same thing holds for all subsets
of size at most n +1. Pick an arbitrary set X such that |X | = n +1. Pick two distinct flowers
f , f ′ ∈ X , and let’s show that smells(f) = smells(f ′). Let Y = X − { f } and Y ′ = X − { f ′}. Obvi-
ously, Y and Y ′ are sets of size at most n, so the induction hypothesis holds for both of them.
Pick any arbitrary x ∈ Y ∩Y ′. Obviously, x 6= f and x 6= f ′. We have that smells(f ′) = smells(x)
(from the induction hypothesis on Y) and smells(f) = smells(x) (from the induction hypoth-
esis on Y ′). Hence smells(f) = smells(f ′), which proves the inductive step and the theorem.

One indication that the proof might be wrong is the large number of occurrences
of the word “obviously” :-).

5. Induction Preliminaries. Consider the abstract syntax of the following arithmetic expres-
sion language defined inductively as follows:

expressions e ∈ Expr ::= n | −e1 | e1 +e2

integers n ∈Z

Prove by induction the following statement:

For all expressions e ∈ Expr, there is at least one integer constant n.

It is not difficult to see that the above statement is true. The exercise is to construct a crisp
mathematical argument, so especially on this first exercise, err on the side of being pedan-
tic.

6. Judgments: Shuffling Cards. For this question, we will play with cards. Rather than the
standard 52 different cards, we will define four different cards, one for each suit. We model
a deck of cards as a list.

♥ card ♠ card ♣ card ♦ card nil deck

c card s deck

cons(c, s) deck

These rules are an iterated inductive definition for a deck of cards.

We also want to define a judgment form unshuffle(s1, s2, s3). Shuffling takes two decks of
cards and creates a new deck of cards by interleaving the two decks in some way; un-
shuffling is just the opposite operation.

The definition of unshuffle(s1, s2, s3) defines a relation between three decks of cards s1, s2,
and s3, where s2 and s3 are arbitrary “unshufflings” of the first deck—sub-decks where the
order from the original deck is preserved so that the two sub-decks s2 and s3 could poten-
tially be shuffled back to produce the original deck s1.

3

unshuffle(nil,nil,nil)

c card unshuffle(s1, s2, s3)

unshuffle(cons(c, s1), s2,cons(c, s3))

c card unshuffle(s1, s2, s3)

unshuffle(cons(c, s1),cons(c, s2), s3)

(a) Prove the following judgment. There are at least two ways to do so.

unshuffle(cons(♥,cons(♠,cons(♠,cons(♦,nil)))),cons(♠,cons(♦,nil)),cons(♥,cons(♠,nil)))

(b) Give an inductive definition defining separate(s1, s2, s3), a judgment form similar to
unshuffle(s1, s2, s3) that relates a deck of cards to two sub-decks where all of the red
cards (suits ♦ and ♥) are in one deck and all the black cards (suits ♣ and ♠) are in the
other. The following should be provable from your inductive definition:

separate(cons(♥,cons(♦,cons(♠,nil))),cons(♥,cons(♦,nil)),cons(♠,nil))
separate(cons(♠,cons(♦,cons(♣,cons(♥,nil)))),cons(♦,cons(♥,nil)),cons(♠,cons(♣,nil)))
separate(cons(♣,cons(♥,cons(♣,cons(♠,nil)))),cons(♥,nil),cons(♣,cons(♣,cons(♠,nil))))

However separate(cons(♥,cons(♠,nil)),cons(♥,cons(♠,nil)),nil) should not be provable
from your definition, because the deck in the second position has both a red and a
black card.

Similarly, separate(cons(♥,cons(♦,nil)),cons(♦,cons(♥,nil)),nil) should not be provable
from your definitions, because ordering is not preserved.

7. OCaml (Recommended Practice). Select a few problems from OCaml 99 Problems (http:
//ocaml.org/tutorials/99problems.html) on which to practice. Here are some I have
picked out:

• Flatten a nested list structure.

• Eliminate consecutive duplicates of list elements.

• Binary search trees (dictionaries). Construct a binary search tree from a list of integer
numbers.

There’s no need to turn in anything for this question. Some sample solutions are given on
the website. At the same time, discussion questions on this exercise are definitely welcome
and encouraged.

4

http://ocaml.org/tutorials/99problems.html
http://ocaml.org/tutorials/99problems.html

